南科大公众号
地空系公众号
联系电话:0755-88018700
电子邮箱:zhangzg@sustech.edu.cn
办公地点:理学院E3131
研究方向:计算地震学,震源物理,地震灾害
副教授。2008年6月毕业于武汉大学,获地球物理学学士学位,2014年11月毕业于中国科学技术大学,获固体地球物理学博士学位,2014年12月至2016年12月在中国科学技术大学从事博士后研究,2016年12月加入南方科技大学。主要从事地震学研究,包括:震源动力学,地震灾害,地震高性能计算,复杂介质中地震波传播等领域,主持、参与多项国家自然科学基金、科技部等项目;并在GRL、GJI、BSSA等期刊发表论文70余篇。2017年获得高性能计算应用领域最高奖“戈登·贝尔”奖(ACM Gordon Bell Prize),2018年获中国地球物理学会傅承义青年科技奖,2019年获国家优秀青年科学基金。
常年招聘博士后、博士生、硕士研究生及访问学生,请来信zhangzg@sustech.edu.cn。
教育背景
2008.09-2014.11,固体地球物理博士,中国科学技术大学
2004.09-2008.06,地球物理学士,武汉大学
工作经历
2020.05-至今,副教授,南方科技大学,地球与空间科学系
2016.12-2020.04,助理教授,南方科技大学,地球与空间科学系
2014.12-2016.12,博士后,中国科学技术大学,地球和空间科学学院
荣誉奖项
2021年,第九届清华大学-浪潮集团计算地球科学青年人才奖
2018年,中国地球物理学会傅承义青年科技奖
2017年,ACM Gordon Bell Prize
2017年,深圳市高层次人才(后备级)
2014年,中国科学院院长优秀奖
本科生课程:《科学计算与计算机编程》
研究生课程:《计算地球物理学》
Ouyang, F.*, Z. Shao, W. Zhang, and Z. Zhang (2024). Dynamic
Rupture and Strong Ground-Motion Simulations of the 8 January 2022 Ms 6.9 Qinghai Menyuan Earthquake, Seismol. Res. Lett., https://doi.org/10.1785/0220240149.
Xia, L., K. Chen*, C. Fang, X. Wang, W. Wang, G. Wei, J. Wang, H. Chai, H. Zhu, and Z. Zhang (2024). Feasibility of Coseismic Landslide Prediction Based on GNSS Observations: A Case Study of the 2022 Ms 6.8 Luding, China, Earthquake, Seismol. Res. Lett., https://doi.org/10.1785/0220240069.
Shi, Y., Y. Li, and Z. Zhang* (2024). Estimation of Economic Loss
by Earthquakes in Taiwan Region, npj Nat. Hazards, 1,
30, https://doi.org/10.1038/s44304-024-00030-x.
Shi, Y., Z. Zhang*, C. Xue, and Y. Feng (2024). Machine Learning
Prediction of Co-Seismic Landslide with Distance and Azimuth Instead of Peak
Ground Acceleration, Sustainability, 16(19), 8332, https://doi.org/10.3390/su16198332.
Sunilkumar, T. C., Z. Zhang*, Z. Wang, W. Wang, and Z. He (2024).
Unveiling the Mechanisms of the 1819 M 7.7 Kachchh Earthquake, India:
Integrating Physics-Based Simulation and Strong Ground Motion Estimates, Earth
Space Sci., 11(8), e2023EA003308, https://doi.org/10.1029/2023EA003308.
He, Z., Z. Zhang*, Z. Wang, and W. Wang (2024). Slip-weakening
distance and energy partitioning estimated from near-fault recordings during
the 2023 Mw 7.8 Türkiye-Syria earthquake, Tectonophysics, 885, 230424, https://doi.org/10.1016/j.tecto.2024.230424.
Wan, J., W. Wang, and Z. Zhang* (2024). Enhancing computational
efficiency in 3-D seismic modelling with half-precision floating-point numbers
based on the curvilinear grid finite-difference method, Geophys. J. Int., 238(3), 1595-1611, https://doi.org/10.1093/gji/ggae235.
Xin, D., Z. Zhang*, B. Chen, F. Wenzeld, Y. Li, and X. Chen (2024).
Can We Develop a More Targeted Approach to Mitigating Seismic Risk? npj Nat.
Hazards, 1, 19, https://doi.org/10.1038/s44304-024-00020-z.
Xu, T., and Z. Zhang* (2024). Numerical simulation of 3D seismic
wave based on alternative flux finite-difference WENO scheme. Geophys. J.
Int., 238(1), 496-512, https://doi.org/10.1093/gji/ggae167.
Xu, D., Z. Li, Z. Zhang, H. Yu, J. Xu, Z. Yang, and X. Chen* (2024).
The 2022 Mw 6.6 Menyuan earthquake: an early-terminated runaway rupture by the
complex fault geometry. Earth Planet. Sci. Lett., 638,118746, https://doi.org/10.1016/j.epsl.2024.118746.
Shi, Y., Y. Li*, and Z. Zhang (2024). Reevaluating Earthquake Fatalities in the Taiwan Region: Toward More Accurate Assessments, Seismol. Res. Lett., 95(3), 1939-1948, https://doi.org/10.1785/0220230353.
Li, Y., Z. Wang, Z. Zhang*, Y. Gu, and H. Yu (2024). A Physics-Based Seismic Risk Assessment of the Qujiang Fault: From Dynamic Rupture to Disaster Estimation, Int. J. Disaster Risk Sci., 15, 165-177, https://doi.org/10.1007/s13753-024-00542-0.
Wan, W., L. Gan, W. Wang, Z. Yin, H. Tian, Z. Zhang, Y. Wang, M.
Hua, X. Liu, S. Xiang, Z. He, Z. Wang, P. Gao, X. Duan, W. Liu, W. Xue, H. Fu,
G. Yang, X. Chen, Z. Song, Y. Chen, X. Liu, and W. Zhang (2023). 69.7-PFlops
Extreme Scale Earthquake Simulation with Crossing Multi-faults and Topography
on Sunway, Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 10, 1-15, https://doi.org/10.1145/3581784.3613209.
Gu, Y., Z. Zhang*, W. Wang, and Z. He (2023). Dynamic rupture modeling and Ground-Motion Simulations of the 2022 Mw 6.6 Luding Earthquake, Seismol. Res. Lett., 94(6), 2575-2585, https://doi.org/10.1785/0220230110.
Wang, Z., W. Zhang, T. Taymaz, Z. He, T. Xu, and Z. Zhang* (2023). Dynamic Rupture Process of the 2023 Mw 7.8 Kahramanmaras Earthquake (SE Türkiye): Variable Rupture Speed and Implications for Seismic Hazard, Geophys. Res. Lett., 50(15), e2023GL104787, https://doi.org/10.1029/2023GL104787.
Yu, H., Z. Zhang, F. Hu, D. Xu, and X. Chen* (2023). Estimation of the Nucleation Location and Rupture Extent of the 1850 Xichang, Sichuan, China, Earthquake by Dynamic Rupture Simulations on a Multi‐Segment Stepover Structure, Earth Space Sci., 10(6), e2022EA002775, https://doi.org/10.1029/2022EA002775.
Xu, D., W. Gong, Z. Zhang, J. Xu, H.
Yu, and X. Chen* (2023). The 2016 Menyuan earthquake: the largest self-arrested
crustal earthquake ever observed, Geophys.
Res. Lett., 50(11), e2023GL103556, https://doi.org/10.1029/2023GL103556.
Li, Y., D. Xin, and Z. Zhang* (2023). Estimating the economic loss caused by earthquake in
Mainland China, Int. J. Disaster Risk Reduct., 95, 103708, https://doi.org/10.1016/j.ijdrr.2023.103708.
Wang, W., Z. Zhang*, W.
Zhang, and Q. Liu (2023). Implementation of efficient low-storage techniques
for 3-D seismic simulation using the curved grid finite-difference method, Geophys. J. Int., 234(3), 2214-2230, https://doi.org/10.1093/gji/ggad198.
Gu, Y., Z. Zhang*, W. Wang, and Z. Wang (2023). Dynamic rupture simulations based on interseismic locking models—taking the Suoerkuli section of the Altyn Tagh Fault as an example, Geophys. J. Int., 234(3), 1737-1751, https://doi.org/10.1093/gji/ggad161.
王文强,李懿龙,张振国*,信丹华,何仲秋,张伟,陈晓非(2023). 2022年9月5日泸定M6.8级地震灾害损失快速评估,中国科学:地球科学,53(6), 1342-1352, https://doi.org/10.1360/SSTe-2022-0290.
Wang,
W., Y. Li, Z. Zhang*, D. Xin, Z. He, W. Zhang, and X. Chen (2023). Rapid
estimation of disaster losses for the M6.8 Luding earthquake on September 5,
2022, Sci. China Earth Sci., 66(6), 1334-1344, https://doi.org/10.1007/s11430-022-1078-6.
Wang, Z., Y. Li, W. Wang, W. Zhang, and Z. Zhang* (2023). Revisiting
paleoearthquakes with numerical modeling: a case study of the 1679
Sanhe-Pinggu earthquake, Seismol. Res.
Lett., 94(2A), 720-730, https://doi.org/10.1785/0220220208.
Xu, D., Z. Zhang, Y. Qian, H. Yu, and X. Chen*
(2022). Dynamic Modeling of the 2020 Mw 6.0 Jiashi Earthquake: Constrained by
Geodetic and Seismic Observations, Seismol.
Res. Lett., 93(6), 3278-3290, https://doi.org/10.1785/0220220102.
Li, Y., Z. Zhang*, W. Wang, and
X. Feng (2022). Rapid Estimation of Earthquake Fatalities in Mainland China
Based on Physical Simulation and Empirical Statistics—A Case Study of the 2021
Yangbi Earthquake. Int. J. Environ. Res. Public
Health, 19(11), 6820. https://doi.org/10.3390/ijerph19116820.
Wang, W., Z. Zhang*, W. Zhang, H. Yu, Q. Liu, W. Zhang, and X. Chen (2022). CGFDM3D-EQR: A Platform for
Rapid Response to Earthquake Disasters in 3D Complex Media, Seismol. Res. Lett., 93(4), 2320-2334, https://doi.org/10.1785/0220210172.
Song, Z., Z. Zhang*, P.G. Ranjith, W. Zhao, and C. Liu (2022). Experimental study on the influence of hydrostatic stress on the Lode angle effect of porous rock, Int. J. Min. Sci. Technol., 32(4), 727-735, https://doi.org/10.1016/j.ijmst.2022.02.007.
Song, Z., Z. Zhang*, G. Zhang, J. Huang, M. Wu (2022). Identifying the Types of Loading Mode for Rock Fracture via Convolutional Neural Networks, J. Geophys. Res.: Solid Earth, 127(2), e2021JB022532, https://doi.org/10.1029/2021JB022532.
Yu, H., F. Hu, J. Xu, Z. Zhang* and X. Chen (2022). Dynamic rupture simulation of the 1833 Songming, Yunnan,
China, M 8.0 earthquake: Effects from stepover location and overlap distance, Earth Space Sci., 9(2), e2021EA002100, https://doi.org/10.1029/2021EA002100.
Taymaz, T.*, S., Yolsal-Çevikbilen, T. S. Irmak, F. Vera, C. Liu, T. Eken, Z. Zhang, C. Erman, and D. Keleş (2022). Kinematics of the 30
October 2020 Mw 7.0 Néon Karlovásion (Samos) earthquake in the Eastern Aegean
Sea: Implications on source characteristics and dynamic rupture simulations, Tectonophysics, 826, 229223, https://doi.org/10.1016/j.tecto.2022.229223.
Chen, K., J.-P. Avouac, J. Geng*, K. Liang, Z. Zhang, Z. Li, and S. Zhang (2022). The 2021 Mw 7.4 Madoi earthquake: an archetype bilateral slip-pulse rupture arrested at a splay fault, Geophys. Res. Lett., 49(2), e2021GL095243, https://doi.org/10.1029/2021GL095243.
Zhang, Z.*, and Y. Zhang (2021). Application of a parameter-shifted grey wolf optimizer for earthquake dynamic rupture inversion, Earthq. Sci., 34(6), 507-521, https://doi.org/10.29382/eqs-2021-0049.
Li, Y., D. Xin, and Z. Zhang* (2021). A Rapid-Response Earthquake Fatality Estimation Model for Mainland China, Int. J. Disaster Risk Reduct., 66, 102618, https://doi.org/10.1016/j.ijdrr.2021.102618.
Yuan S., Z. Zhang, H. Ren, W.
Zhang, X. Song, and X. Chen* (2021). Finite-difference modeling and
characteristics analysis of Love waves in anisotropic-viscoelastic media, Bull. Seismol. Soc. Am., 112(1), 23-47 https://doi.org/10.1785/0120200372.
Xin, D., and Z. Zhang* (2021). On the comparison of seismic ground motion simulated by physics-based dynamic
rupture and predicted by empirical attenuation equations. Bull. Seismol. Soc. Am., 111(5), 2595-2616, https://doi.org/10.1785/0120210077.
Li, Y., Z. Zhang, and D. Xin* (2021). A Composite Catalog of Damaging Earthquakes for Mainland China, Seismol. Res. Lett., 92(6), 3767-3777, https://doi.org/10.1785/0220210090.
Gao, L., W. Zhang, Z. Zhang,
and, X. Chen* (2021). Extraction of multimodal dispersion curves from ambient
noise with compressed sensing, J. Geophys. Res.: Solid Earth, 126(6), e2020JB021472, https://doi.org/10.1029/2020JB021472.
Xu, J., Z. Zhang, and X. Chen* (2021). The effects of sediments on supershear rupture. Tectonophysics, 805, 228777, https://doi.org/10.1016/j.tecto.2021.228777.
Zhang, Z.*, W. Zhang, D. Xin, K. Chen, and X. Chen (2020). A dynamic-rupture model of the 2019 Mw 7.1 Ridgecrest Earthquake being compatible with the observations, Seismol. Res. Lett., 92(2A), 870-876, https://doi.org/10.1785/0220200258.
Chen, K.*, Z. Zhang, C. Liang, C. Xue., and P. Liu (2020). Kinematics and dynamics of the 24 January 2020 Mw 6.7 Elazig, Turkey earthquake, Earth Space Sci., 7(11), e2020EA001452, https://doi.org/10.1029/2020EA001452.
Xu, J., X. Chen, P. Liu, and Z. Zhang* (2020). Ground motion signatures of supershear ruptures in the Burridge-Andrews and free-surface-induced mechanisms, Tectonophysics, 791, 228570, https://doi.org/10.1016/j.tecto.2020.228570.
Zhang, W., Z. Zhang*, M. Li, and X. Chen (2020). GPU implementation of curved-grid finite-difference modelling for non-planar rupture dynamics, Geophys. J. Int., 222(3), 2121-2135. https://doi.org/10.1093/gji/ggaa290.
Yu, H., W. Zhang, Z. Zhang*, Z. Li, and X. Chen (2020). Investigation on the Dynamic Rupture of the 1970 Ms 7.7 Tonghai, Yunnan, China, Earthquake on the Qujiang Fault, Bull. Seismol. Soc. Am., 110(2), 898-919, https://doi.org/10.1785/0120190185.
Qian, Y.*, X. Chen, H. Luo, S. Wei, T. Wang, Z. Zhang, X. Luo (2019). An extremely shallow Mw4.1 thrust earthquake in the eastern Sichuan basin probably triggered by the unloading from a small scale infrastructure construction, Geophys. Res. Lett., 46, 13775-13784, https://doi.org/10.1029/2019GL085199.
Zhang, W., Z. Zhang*, H. Fu, Z. Li, X. Chen (2019). Importance of spatial resolution in ground motion simulations with 3D basins: An example using the Tangshan earthquake, Geophys. Res. Lett., 46(21), 11915-11924, doi:10.1029/2019GL084815.
Zhang, Z.*, W. Zhang, and X. Chen (2019). Dynamic rupture simulations of the 2008 Mw 7.9 Wenchuan earthquake by the curved grid finite-difference method, J. Geophys. Res.: Solid Earth, 124(10), 10565-10582, doi:10.1029/2019JB018630.
Xu, X., Z. Zhang*, F. Hu, and X. Chen (2019). Dynamic rupture simulations of the 1920 Ms 8.5 Haiyuan earthquake in China, Bull. Seismol. Soc. Am., 109(5), 2009-2020, doi: 10.1785/0120190061.
Fu, H.*, B. Chen, W. Zhang, Z. Zhang, W. Zhang, G. Yang, and X. Chen (2019). Extreme-scale earthquake simulations on Sunway TaihuLight, CCF Trans. HPC, 1(1), 14-24, doi:10.1007/s42514-019-00004-w.
Liu, P.*, X. Chen, Z. Li, Z. Zhang, J. Xu, W. Feng, C. Wang, Z. Hu, W. Tu, and H. Li (2018). Resolving Surface Displacements in Shenzhen of China from Time Series InSAR, Remote Sensing, 10(7), 1162.
Harris, R.A.*, M. Barall, B. Aagaard, S. Ma, D. Roten, K. Olsen, B. Duan, D. Liu, B. Luo, K. Bai, J.-P. Ampuero, Y. Kaneko, A.-A. Gabriel, K. Duru, T. Ulrich, S. Wollherr, Z. Shi, E. Dunham, S. Bydlon, Z. Zhang, X. Chen, S.N. Somala, C. Pelties, J. Tago, V.M. Cruz-Atienza, J. Kozdon, E. Daub, K. Aslam, Y. Kase, K. Withers, and L. Dalguer (2018). A Suite of Exercises for Verifying Dynamic Earthquake Rupture Codes, Seismol. Res. Lett., 89(3), 1146-1162, doi:10.1785/0220170222.
Chen, B., H. Fu, Y. Wei, C. He, W. Zhang, Y. Li, W. Wan, W. Zhang, Z. Zhang, G. Yang, X. Chen (2018). Simulating the Wenchuan Earthquake with Accurate Surface Topography on Sunway TaihuLight. In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis (pp. 40:1–40:12). Piscataway, NJ, USA: IEEE Press.
Huang, H., Z. Zhang*, and X. Chen (2018). Investigation of topographical effects on rupture dynamics and resultant ground motions, Geophys. J. Int., 212(1), 311-323, doi:10.1093/gji/ggx425.
Fu, H., C. He, B. Chen, Z. Yin, Z. Zhang, W. Zhang, T. Zhang, W. Xue, W. Liu, W. Yin, G. Yang, and X. Chen (2017). 18.9-Pflopss Nonlinear Earthquake Simulation on Sunway TaihuLight: Enabling Depiction of 18-Hz and 8-meter Scenarios. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (p. 2:1–2:12). New York, NY, USA: ACM, doi:10.1145/3126908.3126910.