南科大公众号
地空系公众号
联系电话:0755-88018831
电子邮箱:jingzc@sustech.edu.cn
办公地点:理学楼E5151
研究方向:矿物物理学、地球与行星内部物理学
副教授(研究员,博士生导师)。2000年获北京大学地球物理系本科学位,2003年获北京大学固体地球物理学硕士学位。2010年获美国耶鲁大学地质与地球物理系博士学位,并随后在美国芝加哥大学高等辐射源中心(Center for Advanced Radiation Sources)做博士后。2013年加入美国凯斯西储大学(Case Western Reserve University),任地球、环境与行星科学系助理教授(准聘-长聘序列)。曾主持中国国家自然科学基金面上项目、重点研发计划项目子课题、美国国家科学基金项目和美国国家航空航天局项目等多个科研项目,在Nature,Nature Communications,PNAS,EPSL,GRL,GCA等学术期刊发表多篇论文。目前担任国际学术期刊American Mineralogist副编辑(Associate Editor)。主要研究方向是矿物物理学和地球与行星内部物理学。通过借助高温高压实验方法,包括大腔体压机、激光加热金刚石压腔和同步辐射X射线技术,以及第一性原理分子动力学计算方法,模拟地球与行星内部的高温高压环境,测定地球和行星内部物质在高温高压条件下的物理和化学性质,并应用这些物质性质来研究地球与行星的内部结构、物质组成和演化过程。
教育背景
2003年-2010年,地球物理学博士,美国耶鲁大学,地质与地球物理系
2000年-2003年,地球物理学硕士,北京大学,地球与空间科学学院
1996年-2000年,地球物理学学士,北京大学,地球物理系
工作经历
2018年7月至今,副教授,南方科技大学,地球与空间科学系
2013年7月-2018年6月,助理教授,美国凯斯西储大学(Case Western Reserve University),地球、环境与行星科学系
2010年1月-2013年6月,博士后学者,美国芝加哥大学(The University of Chicago),高等辐射源中心(Center for Advanced Radiation Sources)
1. 地球与类地行星地幔和地核物质的在高温高压下的物理化学性质
2. 地球深部水循环和碳循环
3. 地球与类地行星内部物质组成、结构、动力学及演化
4. 高压及同步辐射实验技术在地学、行星科学及材料科学中的应用
ESS 201 地球与空间科学导论
ESS 5031 地球与行星内部物理学
35. Liu, T., Z. Jing, 2024. Hydrogen and silicon are the preferred light elements in Earth’s core. Commun. Earth Environ., 5, 282. https://doi.org/10.1038/s43247-024-01450-3.
34. Xu, M., Z. Jing, J.A. Van Orman, T. Yu, and Y. Wang, 2024. In Situ Determination of Thermoelastic Properties of Magnesite at High Pressure and Temperature With Implications to Seismic Detectability of Moderately Carbonated Lithologies in the Earth's Mantle, J. Geophys. Res.: Solid Earth, https://doi.org/10.1029/2023JB028455.
33. Liu, T., Z. Jing, 2024. Thermoelastic Properties of B2-Type FeSi Under Deep Earth Conditions: Implications for the Compositions of the Ultralow-Velocity Zones and the Inner Core, J. Geophys. Res.: Solid Earth, https://doi.org/10.1029/2023JB028539.
32. Xu, M., Z. Jing, Y.J. Ryu, J. Chantel, J.A. Van Orman, T. Yu, and Y. Wang, 2023. Temperature-induced densification in compressed basaltic glass revealed by in-situ ultrasonic measurements, Am. Mineral., https://doi.org/10.2138/am-2022-8694.
31. Wang, X., J. Zhang, A. Tommasi, M.A. Lopez-Sanchez, Z. Jing, F. Shi, W. Liu, F. Barou, 2023. Experimental evidence for a weak calcic-amphibole-rich deep crust in orogens. Geophys. Res. Lett., doi: https://doi.org/10.1029/2022GL102320.
30. Perrillat, J-P., B. Tauzin, J. Chantel, J. Jonfal, I. Daniel, Z. Jing, Y. Wang, 2022. Shear wave velocities across the olivine – wadsleyite – ringwoodite transitions and sharpness of the 410 km seismic discontinuity. Earth Planet. Sci. Lett., doi: 10.1016/j.epsl.2022.117690.
29. Xu, M., Z. Jing, J.A. Van Orman, T. Yu, Y. Wang, 2022. Experimental Evidence Supporting an Overturned Iron-Titanium-Rich Melt Layer in the Deep Lunar Interior. Geophys. Res. Lett., doi: 10.1029/2022GL099066.
27. Wang, X., J. Zhang, A. Tommasi, Z. Jing, M. Yuan, 2021. Microstructure and seismic properties of amphibole-rich rocks from the deep crust in southern Tibet. Tectonophysics, doi:10.1016/j.tecto.2021.228869.
26. Zhu, F., X. Lai, J. Wang, G. Amulele, Y. Kono, G. Shen, Z. Jing, M.H. Manghnani, Q. Williams, B. Chen, 2021. Density of Fe‐Ni‐C liquids at high pressures and implications for liquid cores of Earth and the Moon. J. Geophys. Res.: Solid Earth, doi:10.1029/2020JB021089.
25. Xu, M., Jing, Z., S.K. Bajgain, M. Mookherjee, J.A. Van Orman, T. Yu, Y. Wang, 2020. High-pressure elastic properties of dolomite melt supporting carbonate-induced melting in deep upper mantle. Proc. Natl. Acad. Sci. U.S.A. (PNAS), doi:10.1073/pnas.2004347117.
24. Xu, M., Jing, Z., J.A. Van Orman, T. Yu, Y. Wang, 2020. Density of NaAlSi2O6 Melt at High Pressure and Temperature Measured by In-Situ X-ray Microtomography. Minerals, 10, 161, doi: 10.3390/min10020161.
23. Jing, Z., T. Yu, M. Xu, J. Chantel, Y. Wang, 2020. High-Pressure Sound Velocity Measurements of Liquids Using In Situ Ultrasonic Techniques in a Multianvil Apparatus. Minerals, 10, 126, doi: 10.3390/min10020126.
22. Bajgain, S.K., Y. Peng, M. Mookherjee, Z. Jing, M. Solomon, 2019. Properties of hydrous aluminosilicate melts at high pressures. ACS Earth Space Chem., 3, 390-402, doi: 10.1021/acsearthspacechem.8b00157.
21. Xu, M., Z. Jing, J. Chantel, P. Jiang, T. Yu, Y. Wang, 2018. Ultrasonic velocity of diopside liquid at high pressure and temperature: Constraints on velocity reduction in the upper mantle due to partial melts. J. Geophys. Res.: Solid Earth, doi: 10.1029/2018JB016187.
20. Chantel, J., Z. Jing, M. Xu, T. Yu, Y. Wang, 2018. Pressure dependence of the liquidus and solidus temperatures in the Fe-P binary system determined by in-situ ultrasonics: Implications to the solidification of Fe-P liquids in planetary cores. J. Geophys. Res.: Planets, 123, 1113-1124, doi:10.1029/2017JE005376.
19. Gréaux, S., Y. Kono, Y. Wang, A. Yamada, C. Zhou, Z. Jing, T. Inoue, Y. Higo, T. Irifune, N. Sakamoto, H. Yurimoto, 2016. Sound velocities of aluminum‐bearing stishovite in the mantle transition zone. Geophys. Res. Lett., 43, 4239-4246, doi:10.1002/2016GL068377.
18. Chantel, J., G. Manthilake, D. Frost, C. Beyer, Z. Jing, Y. Wang, T.B. Ballaran, 2016. Elastic wave velocities in polycrystalline Mg3Al2Si3O12-pyrope garnet to 24 GPa and 1300K. Am. Mineral., 101, 991-997.
17. Jing, Z., Y. Wang, Y. Kono, T. Yu, T. Sakamaki, C. Park, M.L. Rivers, S.R. Sutton, G. Shen, 2014. Sound velocity of Fe-S liquids at high pressure: Implications for the Moon’s molten outer core. Earth Planet. Sci. Lett., 396, 78-87.
16. Sakamaki, T., Y. Kono, Y. Wang, C. Park, T. Yu, Z. Jing, G. Shen, 2014. Contrasting sound velocity and intermediate-range structural order between polymerized and depolymerized silicate glasses under pressure. Earth Planet. Sci. Lett., 391, 288-295.
15. Wang, Y., T. Sakamaki, L.B. Skinner, Z. Jing, T. Yu, Y. Kono, C. Park, G. Shen, M.L. Rivers, S.R. Sutton, 2014. Atomistic insight into viscosity and density of silicate melts under pressure. Nature Communications, 5, 3241, doi:10.1038/ncomms4241.
14. Hustoft, J., G. Amulele, J. Ando, K. Otsuka, Z. Du, Z. Jing, S. Karato, 2013. Plastic deformation experiments to high strain on mantle transition zone minerals wadsleyite and ringwoodite in the rotational Drickamer apparatus. Earth Planet. Sci. Lett., 361, 7-15.
13. Chantel, J., D. Frost, C.A. McCammon, Z. Jing, Y. Wang, 2012. Acoustic velocities of pure and iron-bearing magnesium silicate perovskite measured to 25 GPa and 1200K. Geophys. Res. Lett., 39, L19307, doi:10.1029/2012GL053075.
12. Jing, Z., S. Karato, 2012. Effect of H2O on the density of silicate melts at high pressure: Static experiments and the application of a new equation of state. Geochim. Cosmochim. Acta., 85, 357-372.
11. Jing, Z., S. Karato, 2011. A new approach to the equation of state of silicate melts: An application of the theory of hard sphere mixtures. Geochim. Cosmochim. Acta., 75, 6780-6802.
10. Kawazoe, T., S. Karato, J. Ando, Z. Jing, K. Otsuka, and J.W. Hustoft, 2010. Shear deformation of polycrystalline wadsleyite up to 2100 K at 14-17 GPa using a rotational Drickamer apparatus (RDA). J. Geophys. Res., 115, B08208, doi: 10.1029/2009JB007096.
9. Jing, Z., S. Karato, 2009. The density of volatile bearing melts in the Earth’s deep mantle: the role of chemical composition. Chemical Geology. 262: 100-107.
8. Kawazoe, T., S. Karato, K. Otsuka, Z. Jing, and M. Mookherjee, 2009. Shear deformation of dry polycrystalline olivine under deep upper mantle conditions using a rotational Drickamer apparatus (RDA). Phys. Earth Planet. Inter. 174: 128-137.
7. Jing, Z., S. Karato, 2008. Compositional effect on the pressure derivatives of bulk modulus of silicate melts. Earth Planet. Sci. Letters, 272: 429-436.
6. Nishihara, Y., D. Tinker, Y. Xu, Z. Jing, K.N. Matsukage, S. Karato, 2008. Plastic deformation of wadsleyite and olivine at high-pressure and high-temperature using a rotational Drickamer apparatus (RDA). Phys. Earth Planet. Inter., 170: 156-169.
5. Karato, S., D. Bercovici, G.M. Leahy, G. Richard, and Z. Jing, 2006. Transition zone water-filter model for global material circulation: Where do we stand?, in Earth’s Deep Water Cycle, AGU Monograph Series, 168, edited by S.D. Jacobsen and S. van der Lee. pp. 289-313.
4. Matsukage, K. N., Z. Jing, S. Karato, 2005. Density of hydrous silicate melt at the conditions of Earth's deep upper mantle. Nature, 438: 488-491.
3. Jing, Z., J. Ning, S. Wang, S. Zang, 2002. Dynamic phase boundaries of olivine wadsleyite in subduction zones in the western Pacific. Geophys. Res. Lett., 29 (22): 2045, doi:10.1029/2001GL013810.
2. Zang, S., J. Ning, Z. Jing, 2001. Study on the rheology of subducting slabs. Science in China Series D: Earth Sciences, 44 (12): 1119-1127.
1. Jing, Z., J. Ning, 2001. A coupled computational scheme on thermal and phase structures of subducting slabs. Chinese Phys. Lett., 18 (10): 1297-1300.