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Abstract Predicting laboratory earthquakes using machine learning has progressed markedly recently.
Previous related studies mainly focus on predicting the occurrence time and shear stress of laboratory
earthquakes using acoustic emission signals. Here, based on numerical simulations, we use machine learning to
show that statistical features of plate motion signals contain information about the slip duration and friction drop
of laboratory earthquakes. We find that the plate motion signals during the initial slip stage contain the precursor
information about the slip duration of laboratory earthquakes. However, to accurately predict the friction drop,
we need to incorporate the plate motion signals during the entire slip stage. The results demonstrate that the
high‐order moment and variance of plate motion signals are respectively among the best predictors for the slip
duration and friction drop of laboratory earthquakes. Our work provides new insights for future investigations
into natural earthquake prediction through machine learning.

Plain Language Summary Earthquake prediction is an important but challenging task. The booming
of machine learning brings new hope for earthquake prediction. However, the direct utilization of machine
learning for earthquake prediction is still tricky, simply because the available data our human beings currently
have can only cover a limited number of earthquake cycles. In this study, we use numerical simulations to
represent earthquakes as frictional slips and record hundreds of simulated laboratory earthquake cycles
alongside their corresponding fault motion data. We then train the motion data using machine learning to predict
the slip duration and friction drop of upcoming laboratory earthquakes. The results show that the slow pre‐
seismic slip stage, similar to that observed in natural earthquakes, has the potential to indicate seismic
nucleation. Particularly, we find that the fault motion signals during the initial slip stage contain the precursor
information about the slip duration of laboratory earthquakes. Our findings may contribute to predicting the slip
duration and friction drop of natural earthquakes.

1. Introduction
A slow and accelerated slip phase of weeks (Ruiz et al., 2017) to months (Socquet et al., 2017) has been observed
before large earthquakes, and seismic swarms triggered at the slip process may be indicative of nucleation process
(Kato et al., 2012; Ruiz et al., 2014). Similar slip phases prior to laboratory earthquakes (fault stick‐slip failure)
have also been observed in laboratory experiments (Guérin‐Marthe et al., 2019). Due to its ease of observation,
short nucleation periods and reproducibility, laboratory earthquake research can compensate for the restrictions in
studying natural earthquakes. Exploring the correlation between slow and accelerated slip of faults and subse-
quent laboratory earthquake events can improve our understanding of natural fault nucleation processes and
provide new insights into earthquake prediction and early warnings.

Compared with most laboratory experiments, sheared gauge fault tests based on numerical simulation
methods can provide similar b values (Dahmen et al., 2011; Rivière et al., 2018), more microscale infor-
mation (Dorostkar et al., 2017), and it is easier to obtain detailed stress evolution and motion inside/near the
fault system (Brzinski Iii & Daniels, 2018). In addition, the statistical distribution of velocity fluctuations in
sheared granular gouges has been shown to be consistent with observations of interseismic plate motion
fluctuations (Meroz & Meade, 2017). This supports that the sheared granular system, based on numerical
simulation, can be used to study earthquakes, and the statistical distribution of particle motion fluctuations
may be related to the characteristic duration of earthquakes and the frictional state of plate boundaries (Ren
et al., 2019).
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Due to the heterogeneity and anisotropy of faults, traditional seismic data analysis methods are becoming
increasingly difficult to meet research needs. The recent applications of machine learning methods in seismology‐
related fields have demonstrated machine learning's superior capability over traditional methods in excavating
deep correlations between variables from massive data and fitting strong nonlinear mapping relationships be-
tween variables in high dimensions. Mousavi and Beroza (2020) employed a deep learning regression algorithm
to predict earthquake magnitudes based on raw waveforms from a single station and found that the model can
directly learn distance‐dependent and location‐dependent functions from the training data. Rouet‐Leduc
et al. (2017) used a random forest algorithm to predict the timing of shear instability based on acoustic emis-
sion signals collected from biaxial shear experiments, demonstrating that machine learning algorithms can
identify previously unrecognized signals. Corbi et al. (2019) applied the gradient boosting tree algorithm to study
data from multiple earthquake cycles in a laboratory‐scale subduction zone, showing that by reconstructing and
correctly interpreting the system's spatiotemporal complex loading history, it is possible to accurately predict the
timing and magnitude of laboratory earthquakes. Wang et al. (2021) were the first to apply transfer learning to
transfer the potential fault stick‐slip patterns learned from simulated data to the prediction of fault frictional states
in physical experiments, improving the generalization ability of machine learning models for laboratory earth-
quake prediction to a certain extent.

Here, we utilize the Light Gradient Boosting Machine (LightGBM) to investigate whether fault plate motion
signals contain information about the slip duration and friction drop of upcoming laboratory earthquakes in a
shear granular fault simulated using the combined finite‐discrete element method (FDEM). The study shows that
the plate motion signals at the initial slip stage contain the precursor information about the slip duration of
laboratory earthquakes, while predicting friction drop needs to incorporate the whole plate motion signals during
the entire slip stage. Additionally, the high‐order moment and variance of the fault motion signals are among the
best predictors of the slip duration and friction drop of laboratory earthquakes, respectively. This work deepens
our understanding of the seismogenic mechanism of laboratory earthquakes and provides new insights for the
future study of machine learning in earthquake prediction.

2. Materials and Methods
2.1. FDEM and Model Setup

The combined finite‐discrete element method (FDEM) was initially developed by Munjiza (1992), which
combines the algorithmic strengths of both the finite element method (FEM) and discrete element method (DEM)
and allows the simulation of material behaviors transitioning from a continuous to a discontinuous state. The core
principles of FDEM involve governing equations, deformation description, contact detection, and contact
interaction (Lei et al., 2016; Munjiza et al., 2006). The governing equation of FDEM is used to solve the dynamic
response of solid materials under external forces, which can be expressed as

Mẍ + Cẋ = f, (1)

whereM represents the lumped mass matrix, x denotes the displacement vector, C is the damping matrix, and f is
the equivalent force vector acting on each FEM node (Munjiza, 2004). To calculate the temporal evolution of
Equation 1, an explicit time integration scheme based on a central difference method is employed to capture the
transient behavior of the system. The deformation of finite elements is described using a formula based on
multiplicative decomposition (Munjiza et al., 2014). The NBS (Non‐Binary Search) algorithm is used to detect
contact between discrete elements (Munjiza & Andrews, 1998), and all possible contact pairs are recorded.
Finally, the contact force for each contact pair is calculated using a penalty‐based method (Munjiza, 2004;
Munjiza et al., 2011).

FDEM can simulate the linear elasticity within the shear plate and the particles composing the fault gouge through
the FEM module. The interactions between the fault gouge particles and between the fault gouge and the shear
plate are handled using the DEMmethod. Compared to numerical simulation methods based purely on continuous
media, such as FEM, the boundary element method, and the finite difference method, FDEM provides a more
detailed depiction of the deformation and motion of fault gouge particles and the shear plate during the shearing
process. It can simulate the dynamic evolution of deformation and rupture in the shear plate and fault gouge and
obtain information on the stress and strain fields within these materials. Additionally, FDEM incorporates
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multiple contact models, effectively capturing the complex contact behaviors between fault gouge particles and
between the fault gouge and the shear plate during fault shearing (Gao et al., 2018).

Here, we use FDEM to simulate a 2D sheared fault system with granular gouges (Gao et al., 2018) built based on a
photoelastic sheared laboratory experiment (Geller et al., 2015). The geometry of the model is shown in Figure 1,
and the parameters of the material and numerical simulation are shown in Table 1. The finite element method
(FEM) module in FDEM is used to simulate deformations in the shear plates and gouge particles, and the in-
teractions among gouge particles and between the shear plate and particles are processed by the DEM module.
Compared to the laboratory earthquakes traditionally simulated using DEM, FDEM can capture more detailed
deformation and motion in the particles and plates during the stick‐slip cycles (Dratt & Katterfeld, 2017; Ma
et al., 2016) (see Text S1 in Supporting Information S1 for more details).

The model consists of 2,817 circular gouge particles randomly placed between two identical deformable plates,
with foam‐like particles (blue color) on their left and right sides to restrict particles from escaping. In the FDEM
model, three‐node constant‐strain triangular elements are used for the particles and the plates. A total of ∼90,000
triangle elements are generated in the simulation domain. Each particle is composed of 24 elements of approx-
imately equal size. This number of elements allows each particle to maintain a nearly circular shape after meshing
and is sufficient to precisely capture the particle deformation while assuring the model is not too computationally
expensive. Bi‐disperse diameters (1.2 or 1.6 mm) for these particles are adopted to avoid crystallization (Tsai
et al., 2003). The normal stress P and shear velocity v are applied through two stiff bars under the lower plate and
above the upper plate, respectively. At the interface between the plate and particles is a semicircular row of
“teeth” with a total of 286 sensors (143 on each plate) in the center to track the motion of the two plates. Spe-
cifically, the displacements and velocities at these sensor points are recorded with a frequency of every 1 ms.

First, the top and bottom stiff bars move vertically toward each other to consolidate the gouge particles and ensure
they are well contacted. Then, a constant horizontal shearing velocity v= 0.5 mm/s, corresponding to a strain rate
of ε̇ = 0.001 s− 1, is applied on the top stiff bar to realize the shear, while a normal stress P= 28 kPa is maintained
on the bottom stiff bar throughout the simulation. During the shearing, the top plate can only move in the x
direction, while the bottom plate can only move in the y direction. The inertial number is
I = ε̇d̅̅̅̅̅̅

P/ρ
√ ≈ 9.0 × 10− 6 < 10− 3 (d is the average diameter of particles, and ρ = 1,150 kg/m3 is the particle density),

thus ensuring a quasi‐static shearing state. The model is run for roughly 3.0× 108 time steps, and the total shearing
time is approximately 30 s, giving an overall shear displacement of roughly 20 mm (including the pre–steady
state). The tangential contact forces between the plate and each gouge particle are summed, and this resultant

Figure 1. Model setup. The gouge is sandwiched by two identical deformable plates, with foam‐like particles (blue color) on
its left and right sides to restrict particles from escaping. Each particle is further meshed into finite elements to capture its
deformation, and there are 2,817 particles in the gouge. A total of 143 “sensors” are placed on the top and bottom plates,
respectively, in places immediately adjacent to the gouge to track the plate motion during stick‐slip cycles.
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force is then divided by the length of the gouge‐plate boundary to obtain the
shear stress between the deformable plates and the gouge. The shear stress
values from the top and bottom plates are averaged, yielding the shear stress
used in our analysis. The normal stress is obtained in a similar manner. The
displacement and velocity in the x and y directions of each sensor are
monitored during the shearing process. We select the data that the model
reached a stable state after the first 5 s for further analyses (see Text S2 in
Supporting Information S1 for more details).

The evolution of normalized shear stress, defined as the ratio of shear stress to
the applied normal stress, is shown in Figure 2a. It can be observed that the
normalized shear stress exhibits more irregular stick‐slip behavior compared
to the previous double direct shear experiments (Rouet‐Leduc et al., 2017).
We suspect this is because most fault shear stick‐slip experiments are con-
ducted at relatively small scales (∼100 mm). Once a slip occurs, it spans the
entire fault, leading to relatively constant slip event durations and drops in
stress. Our FDEM model is based on the experimental setup of Geller
et al. (2015), which simulates relatively large‐scale stick‐slip experiments. In
this setup, the plates use photoelastic materials with stiffness in the MPa
range, which is significantly lower than the stiffness of rocks (in the GPa
range) typically used in small‐scale experiments. Consequently, numerous
local slips occur during the shear process, leading to a broader range of
variation in the duration and stress drops of slip events. This results in more
irregular stick‐slip behavior. These irregular stick‐slips are likely more
representative of natural fault observations and pose a significant challenge to
accurately building predictive machine learning models. To eliminate minor
rearrangement of particles presented as background fluctuations in the
normalized shear stress signal, we use the Wiener filter, an optimal linear
filter, to denoise the signal. The Wiener filter can be implemented using the

Wiener function from the Scipy library in Python. The disparity between the raw data and the denoised data is
illustrated in Figure 2b, where the filter has removed numerous small and frequent noises but still maintains the
detailed evolution of stick‐slips.

Slip events are extracted by setting a threshold for both the slip duration and friction drop (i.e., the normalized
shear stress drop). The definition of slip duration and friction drop is sketched in Figure 2c on the basis of a typical
slip event. Only slip events with durations greater than 4 ms and friction drops greater than 5 × 10− 5 are
considered. In general, in the initial stage of a slip event, the normalized shear stress gradually declines while the
plate accelerates until reaching a critical slip distance. The seismic nucleation model proposed based on rock
friction experiments (Ohnaka, 1996) and numerical simulation (Dieterich, 1992) posits that localized pre‐slip
occurs along the fault prior to an earthquake, resulting in a decrease in stress. Nucleation initiates and propa-
gates along the fault plane until it reaches the critical nucleation size. Subsequently, dynamic fault slips (i.e.,
earthquake rupture) occur. The gradual reduction in normalized shear stress observed in Figure 2c indicates quasi‐
static nucleation. The proportion of the gradual decline stage in a whole slip varies (see Figure S2 in Supporting
Information S1). A total of 296 slip events are extracted during the shearing of the granular gouge.

To quantify the overall plate motion during the stick‐slip cycle, the velocities and displacements at the 143 sensor
points in the x and y directions on each plate are averaged (see Figures 2d and 2e), and we denote them as the
macroscopic plate velocity and displacement herein. When the normalized shear stress suddenly decreases
(indicating a slip event), there is a sudden increase in the magnitude of displacement and velocity in the shear
direction (Figure S3 in Supporting Information S1). Note that we calculate the x displacement of the top plate
(Dxt) by subtracting its background shearing displacement. Since the velocities and displacements of the top and
bottom plates are nearly symmetric (Figure S4 in Supporting Information S1), we only consider data obtained
from the top plate in the following analyses.

Table 1
Material and Numerical Simulation Parameters

Parameter Value

Particle diameter 1.2 or 1.6 mm

Particle density 1,150 kg/m3

Particle Young's modulus 0.4 GPa

Particle Poisson's ratio 0.4

Particle‐particle friction coefficient 0.15

Number of Particles 2,817

Main plate density 1,150 kg/m3

Main plate Young's modulus 2.5 MPa

Main plate Poisson's ratio 0.49

Particle‐plate friction coefficient 0.15

Stiff bar density 2,800 kg/m3

Stiff bar Young's modulus 30 GPa

Stiff bar Poisson's ratio 0.33

Foam density 1,150 kg/m3

Foam Young's modulus 1 MPa

Foam Poisson's ratio 0.4

Contact penalty 4 GPa

Timestep 10− 7 s

Normal stress P 28 kPa

Shear velocity v 0.5 mm/s
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2.2. Light Gradient Boosting Machine (LightGBM)

We use the LightGBM (Ke et al., 2017), an implementation of the Gradient Boosting Decision Tree (GBDT)
algorithm (Friedman, 2002), to establish the quantitative relation between plate motion and the friction drop and
slip duration of laboratory earthquakes. GBDT algorithms make predictions by “integrating” a set of simple
decision trees. Although the prediction of an individual decision tree may be inaccurate, the errors will be

Figure 2. The simulation results. (a) The normalized shear stress as a function of shearing time. The raw data (gray curve) and
the denoised data (blue curve). (b) A close‐up view of the evolution of normalized shear stress and the difference between the
raw and the denoised data. (c) A close‐up view of a typical slip event, and the definition of friction drop and slip duration.
(d) The x‐ and y‐velocities of the top plate. (e) The x‐ and y‐displacements of the top plate.
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canceled between trees, and the integrated prediction can reach remarkable accuracy. Because of its strong
generalization and good interpretability, GBDT algorithm is an extensively used ensemble learning method.

Compared to other common GBDT algorithms, LightGBM is significantly faster and delivers almost equivalent
performance. LightGBM splits the tree leaf‐wise with the best fit, unlike other boosting algorithms in which
depth‐wise or level‐wise approaches are used. The leaf‐wise algorithm can produce much more complex trees,
reduce more loss than the level‐wise algorithm, and hence result in much better accuracy that is not easily
achievable by other boosting algorithms, such as the XGBoost (Chen et al., 2015). Besides, LightGBM uses a
histogram‐based algorithm that buckets continuous feature values into discrete bins to speed up the training
procedure. The possibility of overfitting can be reduced by setting the max depth parameter. Additionally,
LightGBM uses a novel Gradient‐based One‐Side Sampling (GOSS) technique to filter out the data instances to
find appropriate split values. In contrast, XGBoost uses a pre‐sorted algorithm to compute the best split. In
general, the histogram‐based split algorithm, where the bins of all data points are used to find the split values of
the histogram, is more efficient than the pre‐sorted algorithms where all possible split points on the pre‐sorted
feature values are enumerated.

In each iteration of LightGBM, the negative gradients of the loss function concerning the output of the model are
denoted as gi, which can be illustrated as

gi = ∂ ŷ(t− 1) loss( yi, ŷ(t− 1))

hi = ∂2ŷ(t− 1) loss( yi, ŷ(t− 1))
. (2)

The decision tree model splits each node with the largest information gain for each feature. With the GOSS
method, the information gain measured by the variance of splitting features j at point d for node n can be
defined as

Vj|O(d) =
1
n

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(∑{xi∈Al ;xij ≤ d}gi +
1− a
b ∑xi∈Bl

gi)
2

n j
l (d)

+
(∑{xi∈Ar ;xij ≤ d}gi +

1− a
b ∑xi∈Br

gi)
2

n j
r(d)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3)

The GOSS method keeps the top a × 100% instances with larger gradients and yields an instance subset A. After
that, the remaining set Ac consisting of (1 − a) × 100% instances have smaller gradients. GOSS method randomly
samples a subset B with size b × Ac. Thus, the method estimates information gain over a much smaller sample
subset, in contrast to other methods such as pre‐sort sampling used in XGBoost (Chen et al., 2015) that calculate
accurate information gain through all samples. As a result, the computation cost of LightGBM can be significantly
reduced. Most importantly, in contrast to deep learning approaches, LightGBM is explicit and can track the
contribution of each input feature to the prediction, thus helping us effectively extract the physical information
about the gouge shearing system.

We divide the 296 recorded slip events into the training set (the first 60%, comprising 177 slip events) and testing
set (the remaining 40%, a total of 119 slip events) according to the shearing time. We use three‐fold cross‐
validation to train the machine learning model (i.e., tuning hyperparameters) based on the training data set.
The Hyperopt python package (Bergstra et al., 2013) is employed to automatically tune the hyperparameters of
LightGBM. Hyperopt uses an algorithm called Tree‐based Parzen Esimtors, which efficiently searches through
complex hyperspace to reach optimums by simply defining the functional form and bounds of each hyper-
parameter. Once the optimal set of hyperparameters is determined, the test set is used to evaluate the prediction
performance of the tuned LightGBMmodel. We use the coefficient of determination to measure the performance
of the model.

2.3. Shapely Additive Explanation (SHAP)

After reaching a decent LightGBM prediction model, we utilize the Shapely Additive Explanation (SHAP), a
post‐hoc interpretation method based on game theory (Lundberg & Lee, 2017), to evaluate the relative importance
of each input feature. The SHAP value for each feature is the average marginal contribution of the feature across
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all possible coalitions of input features, representing their contribution toward a higher or lower final prediction.
Compared to other post‐hoc interpretability methods, such as LIME (Ribeiro et al., 2016), which primarily fo-
cuses on local explanations, the SHAP method provides both global and local explanations. Additionally, unlike
feature importance methods that consider only the importance of individual features, SHAP accounts for feature
interactions, offering a more detailed and accurate assessment of feature importance.

The calculation of SHAP values is based on Shapley values, also known as expected marginal contributions. The
SHAP method represents the influence of each feature on the model's output through an additive approach. For a
single sample (x, y), where x represents the feature vector and y is the label, the post‐hoc interpretation model g
can be expressed as

g(x) = ϕ0 +∑
n

i=1
ϕi. (4)

Here, ϕ0 is the average value of the machine learning model f over all samples; n is the number of features in f; ϕi
is the Shapley value of the ith feature xi, representing the expected marginal contribution.

The post‐hoc interpretability model and the machine learning model yield the same prediction value for a single
sample. Therefore, we have

f (x) = ϕ0 +∑
M

i=1
ϕi. (5)

It can be seen that the prediction result f(x) of the machine learning model can be expressed as the sum of the
Shapley values of all features. The SHAP value for each feature can be calculated for each sample. Features with
positive SHAP values contribute to the prediction in a positive manner, and vice versa, and the magnitude of a
SHAP value indicates the strength of the contribution of a feature. By averaging the SHAP values of a feature
across all samples, the importance of that feature can be measured.

3. Results
The friction drop of these slip events against slip duration is shown in Figure 3a. It is found that, in general, the
longer the duration of a slip event, the lower the maximum friction drop. Events with short slip durations and large
friction drops are considered as fast slips, while those with long slip durations and small friction drops can be
treated as slow slips. Events with short slip duration and small friction drop are presumed to resemble the small

Figure 3. (a) Friction drop versus slip duration for all slip events; (b) Logarithmic frequency of friction drop and slip duration of all slip events.
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transient slip (Frank, 2016), which is expected to occur if the magnitude‐frequency distribution of slow slips
follows a power law distribution (Wech et al., 2010). The evolution of the displacement in the x direction of the
deformable plate for different types of events is shown in Figure S5 in Supporting Information S1. An earthquake‐
like magnitude‐frequency distribution was observed in slow‐slip events recorded in the north of Cascadia (Wech
et al., 2010), and there is roughly a similar trend in our data (Figure 3b), that is, the greater the friction drop or
longer the slip duration of an event, the lower its frequency.

For each slip event, we define 10 time windows, spanning from the first 10%–100% of an event's slip duration
time with a 10% increment, as shown in Figure 4. Within each time window, eight statistical values for the
velocity and displacement of the plate in the x and y directions are calculated. These statistics include mean,
variance, median, higher‐order moments and different percentiles. The statistics calculated using the data from
the same time proportional window are used as input for a LightGBM model. The output of the model is the slip
duration or friction drop of the corresponding slip event. Previous work primarily used continuous sliding time
windows to calculate statistical values as input features (Rouet‐Leduc et al., 2017), mainly because these studies
aimed to predict continuous time series data, which requires a one‐to‐one correspondence between stress and
acoustic data over time in a continuous manner. In contrast, our approach predicts the duration and friction drop of
discrete slip events based on plate motion data from different time periods preceding each slip event, which is
fundamentally different from the previous methods.

A total of 20 machine learning models are trained—10 models correspond to each of the 10 time windows data
used for slip duration prediction, and the other 10 models for friction drop prediction. The performance of these
models on the test set is shown in Figure 5a. Specifically, for the prediction of slip duration, when the time
window is the first 10%–40%, the performance of the models is all acceptable, and R2 is above 0.8. As the time
window expands from 50% to 100%, the accuracy of the slip duration prediction progressively deteriorates. This
suggests that the plate motion signals during the initial slip stage contain important information about the slip
event's duration time, whereas the motion signals followed may contain noises for such prediction. For the friction
drop prediction, R2 shows an overall increasing trend with the expansion of the time window, which indicates that
the accurate prediction of friction drop of slip events requires the motion signals in the entire slip stage. This also
demonstrates the difficulty in friction drop prediction in laboratory earthquakes.

We select the two models with the best predictions for slip duration and friction drop, which are the model trained
with the initial 30% time window data for predicting slip duration and the model trained with the 100% time
window data for predicting friction drop, and plot the two models' predictive results respectively in Figures 5b and
5c. The performance in predicting the slip duration appears relatively better, with an R2 above 0.9. In the case of
friction drop prediction, the R2 reaches a maximum of 0.8. It can be seen that the prediction accuracy is higher for
slip events with larger friction drops, whereas the predicted values for events with smaller friction drops tend to be
higher.

Figure 4. Sketch of the procedure through which the machine learning algorithm derives the slip duration and friction drop of slip events from the plate's motion signal.
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4. Discussion
Upon reaching the best prediction, we can further analyze the importance of each feature in the two best models
according to the SHAP values. To measure the feature importance, the absolute values of each feature's SHAP
value across all slip events in the training set are averaged. Figure 6a and b show the mean absolute SHAP values
of the top 10 important features in predicting slip duration and friction drop, respectively. Figure 6c, and d present
how these 10 features affect each model's output by showing the SHAP value of the feature versus the corre-
sponding feature value (low to high relative value, represented by the color bar) at each time in the form of violin
graphs. It can be seen that the fourth‐order moment (i.e., kurtosis) of Dx at the early stage of slip (30% time
window of the slip stage) has the highest contribution to the prediction of slip duration, and the higher the fourth‐
order moment, the larger the SHAP value, that is, the higher positive contribution to the slip duration prediction.
Higher kurtosis corresponds to a greater extremity of deviations (or outliers), which indicates that the slip events
with longer duration have more extreme motions in the initial slip stage.

The second moment of Vx in the whole slip stage exhibits better predictive performance for friction drop, and a
larger second moment of Vx contributes positively to a higher friction drop. The second moment is a statistical
measure of the degree of data dispersion. A greater degree of dispersion in the shear direction of fault movement
indicates more frequent particle rearrangements, which are also associated with larger seismic magnitudes.

Figure 5. (a) The prediction performance of the models trained using the data spanning different time windows of the slip stage. Detailed prediction performance of best
models for predicting, (b) the slip duration (time window is first 30% of the slip duration), and (c) the friction drop (time window is 100% of the slip duration).
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Additionally, in both machine learning models, the statistical features of velocity and displacement along the
normal direction (y direction) also contribute significantly to the model outputs, suggesting that particles perceive
laboratory seismic events not only in the shear but also in the normal direction.

In previous research on machine learning predictions of laboratory earthquakes using physical experimental data
(Bolton et al., 2019), the second and fourth moments of acoustic emission signals have been proven to have the
highest contribution to predicting laboratory earthquakes' timing and shear stress evolution. Since plate bound-
aries and slowly sheared granular media exhibit a similar statistical distribution of velocity fluctuations (Meroz &
Meade, 2017) and sheared granular fault systems can demonstrate comparable stick‐slip behavior as natural fault
systems (Anderson, 2007), we infer that the fourth moment of movement in natural faults during the nucleation
stage may contain precursor information about the slip duration of an upcoming earthquake. The more extreme
movements the fault experiences during the nucleation stage, the longer the slip duration of the subsequent
earthquake. Estimating the slip duration can aid in distinguishing fast and slow earthquakes in advance (Hulbert
et al., 2019), understanding the physical properties of earthquake phenomena, and enhancing earthquake pre-
vention and disaster reduction capabilities (Obara & Kato, 2016). Although in our numerical model, the second
moment of fault movement in the shear direction contributes the most to the prediction of friction drop, achieving
accurate prediction results requires more movement signals during the late slip stage, which seems to imply the
difficulty of predicting earthquake magnitude.

5. Conclusions
We have simulated a sheared granular fault system using FDEM, and use machine learning to predict the friction
drop and slip duration of laboratory earthquakes. We show that the plate motion signals in the initial slip stage
contain precursor information about the slip duration of laboratory earthquakes, while predicting the friction drop
requires the plate motion signals in the entire slip stage. Moreover, we demonstrate that the fourth‐order moment

Figure 6. Feature importance analysis. SHAP values for the top 10 most important features in the two best models for
predicting (a) slip duration and (b) friction drop, respectively. SHAP summary plots for the top 10 most important features in
the two best models for predicting (c) slip duration and (d) friction drop, where each point represents the prediction from the
model for a slip event.
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of plate motion in the shear and normal directions during the initial slip stage are among the best estimators of the
slip duration of laboratory earthquakes. For friction drop, the second moment of the plate motion signals in the
shear direction during the entire slip stage is the best predictive feature. Our work demonstrates the ability of the
machine learning approach to characterize highly aperiodic laboratory earthquakes in granular fault systems and
identify crucial characteristic parameters for modeling such systems.

Data Availability Statement
The data supporting this paper are available at (Wei & Gao, 2024). The Python code for building the machine
learning model is publicly available (Wei, 2024).

References
Anderson, D. L. (2007). New theory of the Earth (2 ed.). Cambridge University Press.
Bergstra, J., Yamins, D., & Cox, D. (2013). Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision
architectures. Paper presented at the International conference on machine learning.

Bolton, D. C., Shokouhi, P., Rouet‐Leduc, B., Hulbert, C., Rivière, J., Marone, C., & Johnson, P. A. (2019). Characterizing acoustic signals and
searching for precursors during the laboratory seismic cycle using unsupervised machine learning. Seismological Research Letters, 90(3),
1088–1098. https://doi.org/10.1785/0220180367

Brzinski Iii, T. A., & Daniels, K. E. (2018). Sounds of failure: Passive acoustic measurements of excited vibrational modes. Physical Review
Letters, 120(21), 218003. https://doi.org/10.1103/physrevlett.120.218003

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., et al. (2015). Xgboost: Extreme gradient boosting. R package version 0.4‐2,
1(4), 1–4.

Corbi, F., Sandri, L., Bedford, J., Funiciello, F., Brizzi, S., Rosenau, M., & Lallemand, S. (2019). Machine learning can predict the timing and size
of analog earthquakes. Geophysical Research Letters, 46(3), 1303–1311. https://doi.org/10.1029/2018gl081251

Dahmen, K. A., Ben‐Zion, Y., & Uhl, J. T. (2011). A simple analytic theory for the statistics of avalanches in sheared granular materials. Nature
Physics, 7(7), 554–557. https://doi.org/10.1038/nphys1957

Dieterich, J. H. (1992). Earthquake nucleation on faults with rate‐and state‐dependent strength. Tectonophysics, 211(1), 115–134. https://doi.org/
10.1016/0040‐1951(92)90055‐B

Dorostkar, O., Guyer, R. A., Johnson, P. A., Marone, C., & Carmeliet, J. (2017). On the micromechanics of slip events in sheared, fluid‐saturated
fault gouge. Geophysical Research Letters, 44(12), 6101–6108. https://doi.org/10.1002/2017GL073768

Dratt, M., & Katterfeld, A. (2017). Coupling of FEM and DEM simulations to consider dynamic deformations under particle load. Granular
Matter, 19(3), 49. https://doi.org/10.1007/s10035‐017‐0728‐3

Frank, W. B. (2016). Slow slip hidden in the noise: The intermittence of tectonic release. Geophysical Research Letters, 43(19), 10–125. https://
doi.org/10.1002/2016gl069537

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367–378. https://doi.org/10.1016/s0167‐
9473(01)00065‐2

Gao, K., Euser, B. J., Rougier, E., Guyer, R. A., Lei, Z., Knight, E. E., et al. (2018). Modeling of stick‐slip behavior in sheared granular fault gouge
using the combined finite‐discrete element method. Journal of Geophysical Research: Solid Earth, 123(7), 5774–5792. https://doi.org/10.1029/
2018jb015668

Geller, D. A., Ecke, R. E., Dahmen, K. A., & Backhaus, S. (2015). Stick‐slip behavior in a continuum‐granular experiment. Physical Review E,
92(6), 060201. https://doi.org/10.1103/physreve.92.060201

Guérin‐Marthe, S., Nielsen, S., Bird, R., Giani, S., & Di Toro, G. (2019). Earthquake nucleation size: Evidence of loading rate dependence in
laboratory faults. Journal of Geophysical Research: Solid Earth, 124(1), 689–708. https://doi.org/10.1029/2018jb016803

Hulbert, C., Rouet‐Leduc, B., Johnson, P. A., Ren, C. X., Rivière, J., Bolton, D. C., & Marone, C. (2019). Similarity of fast and slow earthquakes
illuminated by machine learning. Nature Geoscience, 12(1), 69–74. https://doi.org/10.1038/s41561‐018‐0272‐8

Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of slow slip leading up to the 2011 M w 9.0
Tohoku‐Oki earthquake. Science, 335(6069), 705–708. https://doi.org/10.1126/science.1215141

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., et al. (2017). Lightgbm: A highly efficient gradient boosting decision tree. In Advances
in neural information processing systems (Vol. 30).

Lei, Z., Rougier, E., Knight, E. E., Munjiza, A. A., & Viswanathan, H. (2016). A generalized anisotropic deformation formulation for geo-
materials. Computational Particle Mechanics, 3(2), 215–228. https://doi.org/10.1007/s40571‐015‐0079‐y

Lundberg, S. M., & Lee, S.‐I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Sys-
tems, 30.

Ma, G., Zhou, W., Chang, X.‐L., & Chen, M.‐X. (2016). A hybrid approach for modeling of breakable granular materials using combined finite‐
discrete element method. Granular Matter, 18, 1–17. https://doi.org/10.1007/s10035‐016‐0615‐3

Meroz, Y., & Meade, B. J. (2017). Intermittent granular dynamics at a seismogenic plate boundary. Physical Review Letters, 119(13), 138501.
https://doi.org/10.1103/physrevlett.119.138501

Mousavi, S. M., & Beroza, G. C. (2020). A machine‐learning approach for earthquake magnitude estimation. Geophysical Research Letters,
47(1), e2019GL085976. https://doi.org/10.1029/2019gl085976

Munjiza, A., & Andrews, K. (1998). NBS contact detection algorithm for bodies of similar size. International Journal for Numerical Methods in
Engineering, 43(1), 131–149. https://doi.org/10.1002/(sici)1097‐0207(19980915)43:1<131::aid‐nme447>3.0.co;2‐s

Munjiza, A., Rougier, E., & John, N. W. M. (2006). MR linear contact detection algorithm. International Journal for Numerical Methods in
Engineering, 66(1), 46–71. https://doi.org/10.1002/nme.1538

Munjiza, A. A. (1992). Discrete elements in transient dynamics of fractured media (PhD Thesis). Swansea University.
Munjiza, A. A. (2004). The combined finite‐discrete element method. John Wiley & Sons.
Munjiza, A. A., Knight, E. E., & Rougier, E. (2011). Computational mechanics of discontinua. John Wiley & Sons.
Munjiza, A. A., Rougier, E., & Knight, E. E. (2014). Large strain finite element method: A practical course. John Wiley & Sons.

Acknowledgments
This work is supported by the National
Natural Science Foundation of China
(42374070) and the Guangdong Provincial
Key Laboratory of Geophysical High‐
resolution Imaging Technology
(2022B1212010002).

JGR: Machine Learning and Computation 10.1029/2024JH000398

WEI AND GAO 11 of 12

 29935210, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000398 by K
e G

ao - South U
niversity O

f Science , W
iley O

nline L
ibrary on [10/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1785/0220180367
https://doi.org/10.1103/physrevlett.120.218003
https://doi.org/10.1029/2018gl081251
https://doi.org/10.1038/nphys1957
https://doi.org/10.1016/0040-1951(92)90055-B
https://doi.org/10.1016/0040-1951(92)90055-B
https://doi.org/10.1002/2017GL073768
https://doi.org/10.1007/s10035-017-0728-3
https://doi.org/10.1002/2016gl069537
https://doi.org/10.1002/2016gl069537
https://doi.org/10.1016/s0167-9473(01)00065-2
https://doi.org/10.1016/s0167-9473(01)00065-2
https://doi.org/10.1029/2018jb015668
https://doi.org/10.1029/2018jb015668
https://doi.org/10.1103/physreve.92.060201
https://doi.org/10.1029/2018jb016803
https://doi.org/10.1038/s41561-018-0272-8
https://doi.org/10.1126/science.1215141
https://doi.org/10.1007/s40571-015-0079-y
https://doi.org/10.1007/s10035-016-0615-3
https://doi.org/10.1103/physrevlett.119.138501
https://doi.org/10.1029/2019gl085976
https://doi.org/10.1002/(sici)1097-0207(19980915)43:1%3C131::aid-nme447%3E3.0.co;2-s
https://doi.org/10.1002/nme.1538


Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge earthquakes. Science, 353(6296), 253–257. https://doi.org/10.1126/science.
aaf1512

Ohnaka, M. (1996). Nonuniformity of the constitutive law parameters for shear rupture and quasistatic nucleation to dynamic rupture: A physical
model of earthquake generation processes. Proceedings of the National Academy of Sciences of the United States of America, 93(9), 3795–
3802. https://doi.org/10.1073/pnas.93.9.3795

Ren, C. X., Dorostkar, O., Rouet‐Leduc, B., Hulbert, C., Strebel, D., Guyer, R. A., et al. (2019). Machine learning reveals the state of intermittent
frictional dynamics in a sheared granular fault. Geophysical Research Letters, 46(13), 7395–7403. https://doi.org/10.1029/2019gl082706

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, 2016). “Why should i trust you?” Explaining the predictions of any classifier. Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135–1144. https://doi.org/10.1145/2939672.
2939778

Rivière, J., Lv, Z., Johnson, P. A., & Marone, C. (2018). Evolution of b‐value during the seismic cycle: Insights from laboratory experiments on
simulated faults. Earth and Planetary Science Letters, 482, 407–413. https://doi.org/10.1016/j.epsl.2017.11.036

Rouet‐Leduc, B., Hulbert, C., Lubbers, N., Barros, K., Humphreys, C. J., & Johnson, P. A. (2017). Machine learning predicts laboratory
earthquakes. Geophysical Research Letters, 44(18), 9276–9282. https://doi.org/10.1002/2017gl074677

Ruiz, S., Aden‐Antoniow, F., Baez, J. C., Otarola, C., Potin, B., Del Campo, F., et al. (2017). Nucleation phase and dynamic inversion of the Mw
6.9 Valparaíso 2017 earthquake in Central Chile. Geophysical Research Letters, 44(20), 10–290. https://doi.org/10.1002/2017gl075675

Ruiz, S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., et al. (2014). Intense foreshocks and a slow slip event preceded the 2014
Iquique M w 8.1 earthquake. Science, 345(6201), 1165–1169. https://doi.org/10.1126/science.1256074

Socquet, A., Valdes, J. P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., et al. (2017). An 8 month slow slip event triggers progressive nucleation
of the 2014 Chile megathrust. Geophysical Research Letters, 44(9), 4046–4053. https://doi.org/10.1002/2017gl073023

Tsai, J. C., Voth, G. A., & Gollub, J. P. (2003). Internal granular dynamics, shear‐induced crystallization, and compaction steps. Physical Review
Letters, 91(6), 064301. https://doi.org/10.1103/physrevlett.91.064301

Wang, K., Johnson, C. W., Bennett, K. C., & Johnson, P. A. (2021). Predicting fault slip via transfer learning. Nature Communications, 12(1),
7319. https://doi.org/10.1038/s41467‐021‐27553‐5

Wech, A. G., Creager, K. C., Houston, H., & Vidale, J. E. (2010). An earthquake‐like magnitude‐frequency distribution of slow slip in northern
Cascadia. Geophysical Research Letters, 37(22). https://doi.org/10.1029/2010gl044881

Wei, M. (2024). Python code for Machine learning predicts the slip duration and friction drop of laboratory earthquakes in sheared granular fault
[code]. https://doi.org/10.5281/zenodo.13845904

Wei, M., & Gao, K. (2024). Supporting data for Machine learning predicts the slip duration and friction drop of laboratory earthquakes in sheared
granular fault [dataset]. https://doi.org/10.5281/zenodo.12803380

References From the Supporting Information
Dorostkar, O., Guyer, R. A., Johnson, P. A., Marone, C., & Carmeliet, J. (2017). On the role of fluids in stick‐slip dynamics of saturated granular
fault gouge using a coupled computational fluid dynamics‐discrete element approach. Journal of Geophysical Research: Solid Earth, 122(5),
3689–3700. https://doi.org/10.1002/2017JB014099

Euser, B., Rougier, E., Lei, Z., Knight, E. E., Frash, L. P., Carey, J. W., et al. (2019). Simulation of fracture coalescence in granite via the combined
finite–discrete element method. Rock Mechanics and Rock Engineering, 52(9), 3213–3227. https://doi.org/10.1007/s00603‐019‐01773‐0

Ferdowsi, B. (2014). Discrete element modeling of triggered slip in faults with granular gouge (Ph.D Thesis). In Application to dynamic
earthquake triggering.

Gao, K., Euser, B. J., Rougier, E., Guyer, R. A., Lei, Z., Knight, E. E., et al. (2018). Modeling of stick‐slip behavior in sheared granular fault gouge
using the combined finite‐discrete element method. Journal of Geophysical Research: Solid Earth, 123(7), 5774–5792. https://doi.org/10.1029/
2018JB015668

Lei, Q., & Gao, K. (2018). Correlation between fracture network properties and stress variability in geological media. Geophysical Research
Letters, 45(9), 3994–4006. https://doi.org/10.1002/2018GL077548

Lei, Z., Rougier, E., Munjiza, A., Viswanathan, H., & Knight, E. E. (2019). Simulation of discrete cracks driven by nearly incompressible fluid via
2D combined finite‐discrete element method. International Journal for Numerical and Analytical Methods in Geomechanics, 43(9), 1724–
1743. https://doi.org/10.1002/nag.2929

MiDi, G. (2004). On dense granular flows. The European Physical Journal E, 14(4), 341–365. https://doi.org/10.1140/epje/i2003‐10153‐0
Okubo, K., Bhat, H. S., Rougier, E., Marty, S., Schubnel, A., Lei, Z., et al. (2019). Dynamics, radiation and overall energy budget of earthquake
rupture with coseismic off‐fault damage. Journal of Geophysical Research: Solid Earth, 124(11), 11771–11801. https://doi.org/10.1029/
2019jb017304

Rougier, E., Munjiza, A., Lei, Z., Chau, V. T., Knight, E. E., Hunter, A., & Srinivasan, G. (2019). The combined plastic and discrete fracture
deformation framework for FDEM. International Journal for Numerical Methods in Engineering, 121(5), 1020–1035. https://doi.org/10.1002/
nme.6255

Tatone, B. S. A., & Grasselli, G. (2015). A calibration procedure for two‐dimensional laboratory‐scale hybrid finite–discrete element simulations.
International Journal of Rock Mechanics and Mining Sciences, 75(Supplement C), 56–72. https://doi.org/10.1016/j.ijrmms.2015.01.011

JGR: Machine Learning and Computation 10.1029/2024JH000398

WEI AND GAO 12 of 12

 29935210, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000398 by K
e G

ao - South U
niversity O

f Science , W
iley O

nline L
ibrary on [10/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1126/science.aaf1512
https://doi.org/10.1126/science.aaf1512
https://doi.org/10.1073/pnas.93.9.3795
https://doi.org/10.1029/2019gl082706
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1016/j.epsl.2017.11.036
https://doi.org/10.1002/2017gl074677
https://doi.org/10.1002/2017gl075675
https://doi.org/10.1126/science.1256074
https://doi.org/10.1002/2017gl073023
https://doi.org/10.1103/physrevlett.91.064301
https://doi.org/10.1038/s41467-021-27553-5
https://doi.org/10.1029/2010gl044881
https://doi.org/10.5281/zenodo.13845904
https://doi.org/10.5281/zenodo.12803380
https://doi.org/10.1002/2017JB014099
https://doi.org/10.1007/s00603-019-01773-0
https://doi.org/10.1029/2018JB015668
https://doi.org/10.1029/2018JB015668
https://doi.org/10.1002/2018GL077548
https://doi.org/10.1002/nag.2929
https://doi.org/10.1140/epje/i2003-10153-0
https://doi.org/10.1029/2019jb017304
https://doi.org/10.1029/2019jb017304
https://doi.org/10.1002/nme.6255
https://doi.org/10.1002/nme.6255
https://doi.org/10.1016/j.ijrmms.2015.01.011

	description
	Machine Learning Predicts the Slip Duration and Friction Drop of Laboratory Earthquakes in Sheared Granular Fault
	1. Introduction
	2. Materials and Methods
	2.1. FDEM and Model Setup
	2.2. Light Gradient Boosting Machine (LightGBM)
	2.3. Shapely Additive Explanation (SHAP)

	3. Results
	4. Discussion
	5. Conclusions
	Data Availability Statement



