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A B S T R A C T   

The combined finite-discrete element method (FDEM) has been widely used to simulate the progressive frac-
turing of brittle materials from continua to discontinua. However, due to the relatively simple definition of 
contact potential, the contact interaction algorithm utilized in the original FDEM is element size-dependent. As a 
result, a non-smooth and fluctuating contact force direction can occur when a contact point moves from one area 
of an element to another, and the contact interaction algorithm may fail to accurately evaluate the tangential 
contact force. To circumvent these limitations, we adopt an energy-conserving model developed recently to 
calculate the contact force in 2D FDEM, in which the magnitude and direction of contact force can be directly 
determined by geometrical features. A suite of numerical benchmarks is conducted to validate the effectiveness 
and robustness of the proposed method for contact interaction processing between discrete bodies, and the 
advantages of the proposed method are also demonstrated. As an application, two typical examples are per-
formed to systematically explore the potential of the proposed approach for evaluating the stability of rock mass 
and rock slope. The proposed contact model may help enhance the applicability and accuracy of FDEM for rock 
fracturing simulation.   

1. Introduction 

The combined finite-discrete element method (FDEM) (Munjiza, 
1992), with its capability of bridging the continuum analysis using finite 
element method (FEM) and the discontinuum simulations using discrete 
element method (DEM), provides an effective solution to simulate the 
fracturing behavior of brittle materials such as rocks (Chen et al., 2020; 
Euser et al., 2019; Wu et al., 2021). In FDEM, the modeling domain is 
first discretized into a series of finite elements, and zero-thickness 
cohesive elements are inserted into the common boundaries between 
adjacent finite elements prior to simulation. The finite elements can 
capture the deformation and stress evolution in the solid domain, and 
cohesive elements can simulate the inter-element crack initiation, 
propagation and coalescence (Munjiza, 2004). To date, FDEM has been 
extensively applied in various scientific and engineering problems, such 
as blasting (Han et al., 2020b; Wang et al., 2021; Yang et al., 2020), 
discrete fracture networks (Lei and Gao, 2018; Lei et al., 2021), tunnel 
excavation (Han et al., 2020a), acoustic emission monitoring (Lisjak 

et al., 2013; Zhao et al., 2014; Zhao et al., 2015) and multi-physics/field 
coupling (Xiang et al., 2022; Yan et al., 2018; Yan et al., 2022). 

During the progressive fracturing progress in rock masses, accurately 
estimating the contact interaction between fracture surfaces is crucial to 
capturing the post-failure behaviors. To effectively handle complex 
contact or dynamic impact problems, a potential-based penalty function 
method was initially proposed by Munjiza (2004). In the original FDEM, 
taking the 2D model for example, each triangle element in contact is 
divided into three sub-triangles according to the location of the contact, 
and the contact potential can be defined as the minimum shape func-
tions at the target point in the corresponding sub-triangle (Lei et al., 
2020). Based on Green’s formula, the calculation of the normal contact 
force of the overlap area is simplified as an integral of the potential on 
the boundary of the contactor element, and the direction of normal 
contact force can also be directly obtained by the outward normal di-
rection of the boundary (Munjiza, 2004). However, due to the relatively 
simple definition of contact potential in the original FDEM, the calcu-
lated magnitude and direction of contact forces are sensitive to element 
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size (see Section 3.3), thereby may occasionally result in spurious con-
tact force fluctuation (Lei et al., 2020; Liu et al., 2020; Yan and Zheng, 
2017; Zhao et al., 2018b). 

To alleviate these issues, by combining the characteristic length of 
mesh and the point-to-edge distance, Yan and Zheng (2017) redefined 
the contact potential, which avoids the dependence of element size on 
contact force calculation in particular cases. With a clear physical 
meaning, a novel distance potential function using a normalized pene-
tration distance between contact couples was also proposed to calculate 
normal contact forces (Zhao et al., 2018a,2018b). However, those 
methods can obtain accurate contact force only when each discrete body 
is represented by a single finite element (Lei et al., 2020; Liu et al., 
2022b). Whereas for larger overlap areas between contact objects, the 
normal contact force may decrease with the increase of contact areas, 
which no doubt violates the physics that contact force should be a 
monotone increasing function of contact areas. Additionally, those 
methods may also encounter non-smooth and fluctuating contact force 
when the contact point (where contact force is applied and the total 
moment is zero) moves from one sub-triangle to another. Recently, a 
smooth potential field based on the global geometrical information of 
discrete bodies has been introduced to solve the numerical non- 
smoothness of contact force (Lei et al., 2020). Instead of using the 
traditional “triangle-to-triangle” contact regime, this method adopts a 
“triangle-to-node” approach to calculate contact forces by discretizing 
the edges of the target finite element with Gaussian integration points 
(target points), and is thus suitable for both concave and convex bodies 
of complex shapes. However, the frequent update of the contact po-
tential field induced by the generation of fracture and fragment inevi-
tably reduces the computational efficiency (Liu et al., 2022b). Therefore, 
it is necessary to explore robust and efficient contact algorithms within 
the current framework of FDEM. 

Generally, an appropriate contact model for contact interaction 
should possess clear geometric features and a simple physical law (Feng 
2021b). The geometric features are associated with contact areas, con-
tact force direction, and contact point location; the physical aspect re-
quires appropriate selection of suitable contact interaction law to obtain 
the magnitude of contact force and to capture the physical behaviors of 
contact in terms of the contact geometric features. Taking the rigid- 
particle-based DEM originally proposed by Cundall and Strack (1979) 
for example, the contact geometric features of disk/sphere can be 
straightforwardly described, and the magnitude of the normal contact 
force is defined as a linear or nonlinear function of the overlap area. That 
is, the contact geometric features are independent of the physical law. 
The DEM has broad applications in brittle rock-related simulations due 
to its simplicity of element type and high computational efficiency in 
contact detection and contact interaction (Gu et al., 2020). However, it 
is well known that the circular/spherical bodies lack highly interlocked 
grain structures, which fails to simulate rocks with low strength ratio (i. 
e., the ratio between tensile strength and uniaxial compressive strength) 
and high macro friction coefficient (Potyondy and Cundall, 2004). For 
irregular discrete bodies with arbitrary shapes, the contact geometric 
features are no longer uniquely defined, and the body shape can affect 
the overall physical behavior of the discrete system. For example, the 
vertex-to-vertex contact situation may encounter discontinuity and non- 
smoothness of contact force at the corner of polygon bodies, which 
inevitably leads to local stress fluctuation. The same problem has been 
reported in commercial and research codes such as UDEC (Universal 
Distinct Element Code) (Board, 1989) and DDA (Discontinuous Defor-
mation Analysis) (Shi and Goodman, 1985). 

Fortunately, a unified theoretical framework has been gradually 
established for developing energy-conserving contact models for arbi-
trarily shaped discrete bodies (Feng 2021b, 2021c; Feng et al., 2012). 
This type of contact model not only has the advantages of energy con-
servation for elastic impacts, but also can automatically obtain the 
contact normal direction, contact point and force magnitude without 
explicitly defining the contact potential. Thus, the contact geometric 

features and physical laws in such models are closely related, and 
different combinations of geometric features as variables for the contact 
energy function can generate various energy-conserving contact models. 
Compared to the potential-based penalty function method commonly 
utilized in FDEM, the energy-conserving contact models can effectively 
circumvent the dependence of element size on contact force calculation, 
and avoid the unstable contact force (as will be proved in Sections 3.3 
and 3.4) (Lei et al., 2020). Notably, without the need to define the 
contact potential of Gaussian integration points, the energy-conserving 
contact models can slightly reduce the computation costs by directly 
calculating the gradient of geometric features to coordinate vector (as 
will be illustrated in Section 3.6) (Liu et al., 2022b). This type of contact 
model has been successfully applied in DEM for simulating the me-
chanical behaviors of granular media with arbitrarily shaped rigid 
particles (Gao and Feng, 2019; Lai et al., 2022; Liu et al., 2022a). There 
is also evidence that an energy-conserving contact model has been 
implemented in 3D FDEM by Liu et al., (2022b); however, the contact 
point in this FDEM implementation is approximately taken as the mass 
center of overlap volumes. Such a definition of mass center can only 
guarantee correct contact force calculation for small overlap volumes. 

To sum up, an appropriate definition of contact potential is crucial 
for accurate contact force calculation; however, in the original FDEM, 
such a definition is challenging (Lei et al., 2020; Yan and Zheng, 2017; 
Zhao et al., 2018b). Although much effort has been made to circumvent 
this problem, establishing a contact potential field considering solid 
fracturing is difficult. The energy-conserving contact models proposed 
by Feng (2021a) can automatically obtain the contact direction, contact 
point and force magnitude without explicitly defining the contact po-
tential, which simplifies the contact force calculation process. In this 
work, based on our 2D in-house FDEM code – Pamuco (Parallel •
multiphysics • coupling), we adapt the energy-conserving contact 
model developed by Feng (2021a) to better accommodate the contact 
interaction process in FDEM, and simulate the collisions between arbi-
trarily shaped deformable bodies. Compared to the work by Feng 
(2021a), we have also made the following improvements in the present 
paper: (i) except for the normal contact force computation, the calcu-
lation of tangential contact force and its detailed realization procedure 
in FDEM is also systematically introduced; (ii) more details about the 
determination of geometrical features in the framework of FDEM, such 
as contact area, contact point and normal contact direction, are pro-
vided; (iii) the deformation and stress of discrete bodies in contact can 
be well captured. 

The paper is organized as follows. In Section 2, the explicit solution 
approach based on the energy-conserving contact model is briefly 
introduced in the framework of FDEM. Additionally, we systematically 
illustrate how to determine the contact overlap area and calculate the 
contact force (normal and tangential) using the energy-conserving 
contact model for triangle finite elements. In Section 3, a series of 
benchmark cases are performed to validate the accuracy and robustness 
of the proposed method for contact force calculation between discrete 
bodies. The advantages of the proposed method are also demonstrated in 
comparison to the original contact algorithm proposed by Munjiza 
(2004). Following this, two typical application cases are presented in 
Section 4 to demonstrate the potential of the proposed method in 
evaluating the stability of rock mass and rock slope. Conclusions are 
drawn in Section 5. 

2. Theories 

In this section, we first introduce the governing equation, explicit 
solution scheme, and the constitutive laws of finite elements in FDEM. 
Then, the energy-conserving contact theory for normal and tangential 
contact force calculation is systematically illustrated. 
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2.1. Governing equation 

In a 2D FDEM model, the solid matrix is discretized into an assembly 
of triangle finite elements, and explicit time integration schemes are 
adopted to solve the motion equations. Generally, the governing equa-
tion in FDEM can be expressed as (Munjiza, 2004) 

Mü + Cu = f (1)  

where M is the mass matrix, C is the damping matrix, u is the node 
displacement vector, and f represents the total force vector. The 
damping matrix is introduced to consume kinetic energy for quasi-static 
cases, i.e., the so-called dynamic relaxation, which can be calculated by 

C = ηI (2)  

where η and I are the damping coefficient and identity matrices of finite 
elements, respectively. The FDEM uses the central difference scheme to 
update the displacement and velocity of nodes at each simulation 
timestep. Then, the velocity of each node can be obtained by (Munjiza, 
2004) 

u̇(t + Δt) = u̇(t) + ü(t)⋅Δt (3)  

where Δt is the timestep, and t and t + Δt denote the previous and 
current time instants, respectively. The displacement vector u(t + Δt) of 
the node can be updated using (Munjiza, 2004) 

u(t + Δt) = u(t) + u̇(t + Δt)⋅Δt (4) 

In FDEM, the ultimate timestep Δt is the smaller value of the required 
stability timestep between FEM and DEM (Guo et al., 2015), i.e., 

Δt = min{ΔtFEM ,ΔtDEM} (5)  

Here 

ΔtFEM ∼
h
10

̅̅̅̅
ρ
E

√

(6)  

and 

ΔtDEM ∼
π
5

̅̅̅̅̅
m
Pn

√

(7)  

where ΔtFEM and ΔtDEM are the required timestep of FEM and DEM, 
respectively, ρ is the density, E is the Young’s modulus, h is the minimum 
length of triangle elements, m is the minimum mass of one single triangle 
element, and Pn is the contact stiffness between the contact couples. 

2.2. Constitutive equation 

Unlike the collision of rigid bodies in traditional DEM, we can obtain 
the detailed stress and deformation distribution of bodies during the 
contact process in FDEM. The mechanical behavior of constant strain 
finite elements can be expressed by (Munjiza, 2004) 

σij =
λ
2

(

J −
1
J

)

δij +
μ
J
(
Bij − δij

)
+ ηDij (i, j = 1, 2) (8)  

Here 

Bij = ui,j + uj,i (9)  

and 

Dij =
1
2
(
vi,j + vj,i

)
(10)  

where σij represents the Cauchy stress tensor, λ and μ are the Lame 
constants, ui,j and uj,i are both the deformation gradient tensor, vi,j and 
vj,i are both the velocity gradient tensor, Bij denotes the left Cauchy- 

Green deformation tensor, Dij is the rate of deformation tensor, J is 
the determinant of deformation gradient, η is the viscous damping co-
efficient, and δij is the Kronecker delta. 

The boundary conditions are (Ju et al., 2016) 

ui = ūi , σijnj = Ti (11)  

and the initial conditions are (Ju et al., 2016) 

ui(x, t = 0) = ūi(x), u̇i(x, t = 0) = ¯̇ui(x) (12)  

where nj is the outward unit normal vector to the external surface, Ti is 
the externally applied traction force, ui is the component of displace-
ment vector u, and x denotes the coordinate vector. 

2.3. Contact model 

The contact algorithm for processing the interaction between 
neighboring finite elements in FDEM involves contact detection and 
contact interaction. The contact detection of finite elements in touch is 
conducted to determine contact couples. The efficient NBS (non-binary 
search) algorithm is commonly used in FDEM for contact detection, 
which yields a theoretical CPU time proportional to the total number of 
finite elements (Munjiza and Andrews, 1998). After obtaining the con-
tact couple lists, the contact interaction algorithm will be invoked to 
calculate the contact forces. 

Here, the normal contact force is calculated by implementing the 
energy-conserving contact model developed earlier for arbitrarily sha-
ped bodies (Feng 2021b, 2021c; Feng et al., 2012). Taking the two 
arbitrarily shaped 2D bodies Ω1 and Ω2 with overlap for example 
(Fig. 1a), the overlap or contact area S is the intersection of the two 
bodies, which generally determines the geometric aspect of the contact 
between the two bodies concerned, i.e., 

S ≡ Ω1 ∩ Ω2 ∕= ∅ (13)  

where Γc ≡ ∂S is the boundary of the overlap area S. Based on any 
reference point (x, θ), we can define the corresponding contact force Fn 
and contact moment Mθ acting at the reference point. Note that x is the 
coordinate vector and θ denotes the rotation of bodies with respect to the 
reference point. In 2D space, we can define a scalar potential function 
φ(S) to describe the contact state, which has a sound physical explana-
tion that the contact force and contact moment at the state will reduce 
the contact energy most effectively or at the largest rate, i.e., 

Fn = − ∇xφ(S) = −
dφ(S)

dS
∂S
∂x

= − φ’(S)∇xS = Fnr (14)  

and 

Fig. 1. (a) Two arbitrarily shaped bodies Ω1 and Ω2 in contact and their contact 
region. (b) Discretization of the two discrete body domains. The contact point is 
denoted as point P (marked by a red dot), whose coordinate vector is repre-
sented by xP; the contact areas and boundaries are presented by S and Γc, 
respectively; and r is the normal direction of contact force. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Mθ = − ∇θφ(S) = −
dφ(S)

dS
∂S
∂θ

= − φ’(S)∇θS (15)  

Here, ∇ denotes the gradient operator, Fn is the magnitude of normal 
contact force Fn between discrete bodies, and r is the direction of normal 
contact force. As pointed out in the previous works (Feng 2021b, 2021c; 
Feng et al., 2012), selecting a reference point in a solid body is arbitrary, 
which no doubt causes the non-determinacy of the calculated tangential 
contact force. Then we denote a contact point P, whose coordinate 
vector is represented by xP, to conveniently apply contact force on 
discrete bodies. The total contact moment is zero, i.e., 

(xP − x) × Fn − Mθ = 0 (16)  

where 

xP = x +
r × Mθ

‖Fn‖
+ λr (17)  

r = xP − x (18)  

and λ is a free parameter and defines a fixed line (contact line) along the 
normal contact direction. Theoretically, any point on the contact line 
will result in the same normal motion of the bodies. 

In FDEM, each of the two discrete bodies (e.g., Ω1 and Ω2) in touch is 
discretized into a series of triangle finite elements (see Fig. 1b). The 
contact between the two bodies can be simplified into contact between a 
series of triangle elements along the boundary Γc. These boundary ele-
ments can be further grouped into contact couples based on their rela-
tive positions, denoted as target and contactor elements. Due to the 
simple geometry of triangle elements, we can further simplify the 
calculation form of contact force defined by Eq. (14). Importantly, we 
can directly determine the coordinate vector of the contact point P for 
2D triangle elements. For the contact couple (e.g., contactor element 
ΔABC and target element ΔDEF) shown in Fig. 2, we can obtain the 
following: 

∇xS =
∑k

i=1
bini (19)  

Fn = φ’(S)‖∇xS‖ (20)  

r = −
∇xS
‖∇xS‖

(21)  

where k is the number of contact edges in the overlap area, bi is the 
length of the ith contact edge, and ni is the outward unit normal vector of 
the ith contact edge. Herein, we take the potential function as 

φ(S) =
S2

2Sd
Pn (22)  

where, 

Sd =
Sc + St

2
(23)  

Pn is the normal penalty parameter, and Sc and St are the areas of contact 
couples. After determining all the intersecting points of contact couples, 
the corresponding contact directions and the overlap area can be easily 
obtained. Taking the intersecting point G between edges AB and DE 
shown in Fig. 2a for example, the distances between points D (dD-AB) and 
E (dE-AB) with respect to edge AB can be respectively obtained by 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dD - AB =
AB̅→

× AD̅→

⃦
⃦
⃦AB̅→

⃦
⃦
⃦

dE - AB =
AB̅→

× AE̅→

⃦
⃦
⃦AB̅→

⃦
⃦
⃦

(24) 

Then the coordinate vector xG of the intersection point G is deter-
mined by 

xG =

⃒
⃒
⃒
⃒

dD - AB

dD - AB − dE - AB

⃒
⃒
⃒
⃒xE +

(

1 −

⃒
⃒
⃒
⃒

dD - AB

dD - AB − dE - AB

⃒
⃒
⃒
⃒

)

xD (25)  

where xD and xE are the coordinate vectors of points D and E, respec-
tively. Other intersection points can be obtained similarly. As shown in 
Fig. 2a, the contact point P is the middle point of line GH, which has a 
clear geometric interpretation. More theoretical derivation about the 
determination of contact points is available in previous literature (Feng 
et al., 2012; Feng and Owen, 2004). 

It is worth noting that the effect of tangential contact force is not 
considered in the energy-conserving contact model developed by Feng 
(2021a). To address this problem, we borrow the strategy from the 
original FDEM contact model, in which the tangential contact force is 
calculated based on the relative slipping displacement between contact 
couples upon using Coulomb’s friction law. The relative velocity Vrp at 
contact point P is given by 

Vrp = Vcon − Vtar (26)  

where Vcon and Vtar are the velocities (see Fig. 2b) of the contactor and 
target element at contact point P, respectively, which can be calculated 
by 

Vcon = NAVA + NBVB + NCVC (27)  

and 

Vtar = NDVD + NEVF + NFVF (28)  

Here, VA, VB, VC, VD, VE and VF are the nodal velocities (see Fig. 2b), and 
NA, NB, NC, ND, NE and NF are the shape functions satisfying 
NA +NB +NC = 1 and ND + NE + NF = 1. More details about the 
shape functions are available in previous literature (Munjiza, 2004; 
Munjiza et al., 2011). Then the tangential relative displacement 

Fig. 2. (a) Two triangle elements in contact. (b) The velocities of nodes and contact point. The contact point is denoted as point P, and is marked by a red dot. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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increment (Δu) within one timestep (Δt) is given by 

Δu = VrptΔt (29)  

where Vrpt is the projection of Vrp on line GH. The contact tangential 
force can be updated incrementally by 

Fs = Ft− Δt
s − PsΔu (30)  

where Fs and Ft− Δt
s are tangential contact force at current and previous 

timesteps, respectively, and Ps is the tangential penalty parameter. If 
|Fs| ≥ |Fn|μ, then the tangential contact force can be calculated based 
on Coulomb’s friction law, i.e., 

Fs =
Fs

|Fs|
|Fn|μ (31)  

where Fn is the normal contact force at the contact point, and μ is the 
friction coefficient between contact couples. Finally, the total contact 
force Ftotal due to the penetration and friction acting on the contact point 
can be obtained by 

Ftotal = Fn + Fs (32) 

After this, the contact force will be resolved to the three nodes of the 
associated triangle elements. Combining with the Cauchy stress of tri-
angle elements in the previous timestep, the nodal displacement and 
velocity in the current timestep can be updated according to Eq. (8), in 
order to prepare for the computation in the next timestep. 

It is worth noting that the contact penalties (Pn and Ps) are numerical 
parameters defined as the ratio between contact force and contact area. 
Theoretically, the contact penalty should be infinity to avoid overlap 
between contact couples. In practice, too large a contact penalty will 
lead to a small timestep and thus increase the computational cost; 
however, too small a contact penalty may produce a significant overlap 

between contact couples. According to the previous works (Deng et al., 
2021a; Deng et al., 2021b; Tatone and Grasselli, 2015), the contact 
penalty set as 1–100 times Young’s modulus could achieve the balance 
between computational efficiency and accuracy. 

3. Validation and comparison 

In this section, several numerical tests, such as momentum conser-
vation and frictional sliding tests, are first conducted to validate the 
accuracy of the proposed contact model in the current FDEM. Then, we 
show the robustness of the proposed approach for contact force calcu-
lation by comparing the results to the contact algorithm employed in the 
original FDEM (i.e., Munjiza’s method). Although much effort has been 
made to improve the contact interaction in the original FDEM (Yan and 
Zheng, 2017; Zhao et al., 2018a,2018b), some deficiencies illustrated in 
Section 3.3–3.6 still exist in those contact models. Therefore, we only 
compare the results to the contact algorithm between our proposed 
method and Munjiza’s method in this section due to the extensive 
application of the latter. 

3.1. Momentum conservation 

Block collision tests are first conducted to validate the correctness of 
the proposed contact model in terms of momentum conservation. As 
shown in Fig. 3a, the model consists of two identical square and fric-
tionless blocks (Block-1 and Block-2) with an edge length of 10 mm. The 
parameters used for the two blocks are as follows: Young’s modulus E =
30.0 GPa, Poisson’s ratio ν = 0.25, bulk density ρ = 2700 kg/m3, contact 
penalty Pn = Ps = 90 GPa, and timestep Δt = 3.0 × 10-8 s. Contact friction 
is not considered here, and the viscous damping coefficient of finite 
elements is η = 9.0 × 103 kg/m⋅s. The model consists of 800 triangle 
finite elements with an average size of 1 mm. Gravity is ignored, and the 
total simulation time is 6 × 10–3 s. Block-1 is stimulated with an initial 

Fig. 3. (a) Initial configuration and mesh of the collision squares with identical geometry. (b) The total momentum of the two blocks in terms of analytical solution 
and FDEM simulation. The instant of collision between the two blocks is marked by a dashed line. 

Fig. 4. (a) Initial configuration of the frictional experiment. (b) Mesh.  

W. Cai et al.                                                                                                                                                                                                                                     



Computers and Geotechnics 166 (2024) 105972

6

horizontal velocity (along x axis) of 0.5 m/s toward Block-2. Note that 
the mass center velocities of the two blocks are monitored for calculating 
their momentums. The numerical results of the total momentum of 
Block-1 and Block-2 versus time are shown in Fig. 3b. The maximum 
difference between the FDEM simulated result and the analytical solu-
tion is ~ 3.7 × 10-10 kg•m/s, demonstrating the excellent accuracy of 
our implemented contact model in terms of momentum conservation. 

3.2. Frictional experiment 

The classic case of a sliding block on an inclined surface, as shown in 
Fig. 4a, is used to verify the accuracy of the proposed approach for 
contact force calculation. The model consists of one square block (Block- 
1) at the top and a triangle block (Block-2) at the bottom. The edge 
length of Block-1 is 10 mm. The lateral length of Block-2 is 60 mm, and 
the angle of the inclined surface is ψ = 30◦ with respect to the horizontal 
line. The parameters used for the model are as follows: Young’s modulus 
E = 30.0 GPa, Poisson’s ratio ν = 0.2, bulk density ρ = 2700 kg/m3, 
contact penalty Pn = Ps = 300 GPa, finite element viscous damping co-
efficient η = 1.8 × 104 kg/m⋅s, and timestep Δt = 6.0 × 10-8 s. Block-2 is 
completely fixed. The model consists of 1352 triangle elements with an 
average size of 2.5 mm (see Fig. 4b), and the total simulation time is 
0.18 s. If the selected equivalent friction angle between Block-1 and 
Block-2 is smaller than the inclined angle (i.e., 30◦), Block-1 (with a zero 
initial velocity) will slide along the inclined surface of Block-2 under 
gravity. The analytical solution for the displacement s and velocity v of 
Block-1 along the inclined surface of Block-2 at time t are given by 

s =
1
2

g(sin ψ − μ cos ψ)t2 (33)  

and 

v = g(sin ψ − μ cos ψ)t (34)  

respectively, where g is the gravitational acceleration (g = -9.8 m/s2), 
and μ denotes the friction coefficient between Block-1 and Block-2. In 
addition, the analytical solutions for the normal and tangential contact 
force (Fn and Fs) between Block-1 and Block-2 are respectively 

Fn = mg cos ψ (35)  

and 

Fs =

{
mg sin ψ μ ≥ tan ψ

μFn μ < tan ψ (36)  

where m denotes the mass of Block-1. 
The evolutions of displacement and velocity of Block-1 along the 

inclined surface of Block-2 for three friction coefficients between Block- 
1 and Block-2, i.e., μ = 0, 0.2, 0.4, are shown in Fig. 5. Note that these 
three selected friction coefficients can guarantee the slip of Block-1 
along the inclined surface of Block-2. It can be seen that the displace-
ment and velocity obtained from the FDEM simulation are in good 
agreement with the analytical solution (Eqs. (33) & (34)), which vali-
dates the accuracy of the proposed approach for block sliding test. In 
addition, to further test the proposed approach for capturing the contact 

Fig. 5. (a) Displacement and (b) velocity of Block-1 along the inclined surface of Block-2 for the three friction coefficients between Block-1 and Block-2 (μ = 0, 
0.2, 0.4). 

Fig. 6. Numerical and analytical results in terms of contact force magnitude between Block-1 and Block-2 for the two friction coefficients. (a) μ = 0.2. (b) μ = 0.8.  
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force magnitude, we select two friction coefficients, i.e., the previous μ 
= 0.2 and a new μ = 0.8, to create two scenarios in which Block-1 can 
slide and remain still on Block-2, respectively. As shown in Fig. 6, the 
normal and tangential contact force between Block-1 and Block-2 ob-
tained from the FDEM simulation are consistent with the analytical so-
lution (Eqs. (35) & (36)), which validates the accuracy of the proposed 
approach for contact force calculation. 

3.3. Sensitivity of mesh size 

As mentioned in previous FDEM works (Yan and Zheng, 2017; Zhao 
et al., 2018a,2018b), the definition of contact potential in the original 
FDEM (referred to as Munjiza’s approach hereafter) is sensitive to 
element size. Here, we perform a series of contact tests to compare the 
normal contact forces calculated using Munjiza’s and the proposed 
approach under the same overlap areas. As shown in Fig. 7a, the model 
contains one small square block (Block–1) and a large rectangle block 
(Block-2), where the edge length of Block-1 is 10 mm, and Block-2 has 
dimensions of 90 mm × 10 mm (width × height). Block-2 is divided into 
three equal-length segments (Segment-1, Segment-2 and Segment-3 
from left to right) with different prescribed average element sizes for 
meshing. Six combinations of prescribed average element sizes for the 
three segments in Block–2 are tabulated in Table 1, which are succes-
sively numbered as Case-i (i = 1, 2, …, 6), with the purpose of generating 
different scenarios to test the element size dependency of the two ap-
proaches. The unstructured Delaunay triangulation mesh scheme is used 
in the current analysis. For the model shown in Fig. 7a, since we use 
different prescribed mesh sizes for the three segments, there will be a 
smooth transition near the boundaries between adjacent segments in 
terms of yielded element size. This also indicates that for two segments 
in different cases using the same prescribed element size, if the pre-
scribed element sizes of their adjacent segments are different, the yiel-
ded element sizes for these two segments will be different. Block-2 is 

Fig. 7. (a) Model geometry and loading conditions. (b) Mesh for Case-1. The 
large rectangle block (Block-2) is evenly divided into three segments with 
different prescribed average element sizes. 

Table 1 
Different combinations of prescribed average element sizes for the three seg-
ments in Block-2.  

Combination Segment-1 (mm) Segment-2 (mm) Segment-3 (mm) 

Case-1 2 3 5 
Case-2 2 5 3 
Case-3 3 2 5 
Case-4 3 5 2 
Case-5 5 2 3 
Case-6 5 3 2  

Fig. 8. Evolutions of normal contact force with time for both Munjiza’s and the proposed method under different combinations of prescribed average element size for 
Block-2: (a) Case-1, (b) Case-2, (c) Case-3, (d) Case-4, (e) Case-5 and (f) Case–6. 
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fixed during the simulation, and a constant velocity of 5 m/s along the x 
axis is imposed on Block–1. The vertical direction of Block-1 is fixed, and 
thus a small amount of constant overlap area between Block-1 and 
Block–2 is maintained during the sliding process. 

The parameters used for the model are as follows: Young’s modulus 
E = 30.0 GPa, Poisson’s ratio ν = 0.1, bulk density ρ = 2700 kg/m3, 
contact penalty Pn = Ps = 300 GPa, finite element viscous damping co-
efficient η = 9.0 × 104 kg/m⋅s, and timestep Δt = 6.0 × 10-8 s. The 
gravity and the contact friction between the two blocks are not 
considered, and the total simulation time is 0.012 s. The unstructured 
Delaunay triangulation mesh scheme is utilized for Block-2, whereas 
Block-1 is discretized into four equal-size triangle elements (see Fig. 7b). 
The model consists of 279 triangle elements. As shown in Fig. 8, fluc-
tuations of normal contact force during the sliding process are observed 
in Munjiza’s method in all the six cases due to its dependence on element 
size for contact potential calculation. Fortunately, the normal contact 
forces calculated using the proposed approach in all cases remain nearly 
constant, which validates the robustness and correctness of the proposed 
approach in normal contact force calculation. 

3.4. Normal contact force direction 

Apart from the unstable contact force magnitude in the original 
FDEM demonstrated in Section 3.3, the definition of contact potential 
could also lead to non-smooth contact force direction when the contact 
point moves from one sub-triangle to another (Lei et al., 2020). This 
problem is also mentioned in previous works (Yan and Zheng, 2017; 
Zhao et al., 2018a,2018b). Here, two overlapped equilateral triangle 
finite elements (Block-1 and Block-2), with a side length of 10 mm and 5 

mm, respectively, are designed to test the correctness of the proposed 
approach for contact force direction calculation. As shown in Fig. 9a, 
Block-1 is fixed, and a constant velocity of 0.1 m/s along the x axis is 
imposed on Block-2. The y direction of Block-2 is fixed, resulting in a 
constant overlap area between the two blocks during the sliding process. 
The parameters used for the model are as follows: Young’s modulus E =
30.0 GPa, Poisson’s ratio ν = 0.25, bulk density ρ = 2700 kg/m3, contact 
penalty Pn = Ps = 300 GPa, finite element viscous damping coefficient η 
= 7.8 × 104 kg/m⋅s, and timestep Δt = 2.6 × 10-7 s. The gravity and 
contact friction between the two blocks are not considered, and the total 
simulation time is 5.72 × 10-2 s. 

We denote the intersection angle between the calculated normal 
contact force direction and the x axis as γ (anticlockwise positive from 
the right). As shown in Fig. 9b, for Munjiza’s approach, γ gradually in-
creases when the location of contact transits from sub-triangle ΔABO to 
ΔBOC, and then γ gradually decreases when transiting from ΔBOC to 
ΔAOC. This indicates that when Block-2 is located near the two sides of 
sub-triangle ΔBOC, the calculated normal contact force direction using 
Munjiza’s approach deviates from the correct direction, i.e., the y di-
rection (γ = 90◦). However, the normal contact force direction obtained 
by the proposed contact algorithm remains unchanged at γ = 90◦ during 
the sliding process. This agrees with the physics that the geometric 
features between the two blocks are constant. Therefore, the proposed 
contact algorithm can effectively overcome the non-smooth transition of 
normal contact force direction. 

3.5. Tangential contact force 

To compare the tangential contact force calculated by Munjiza’s 

x
yA

B C

O

D

E F

v = 0.1 m/s
Constant velocity

10
 m

m

5 mm

Sub-triangle

Fixed

(b)(a)

Block-1

Block-2

Overlap area

Fig. 9. (a) Model geometry. (b) Evolution of the normal contact force direction with time for Munjiza’s and the proposed method.  

Fig. 10. (a) Geometric configuration of two blocks for tangential contact force calculation. (b) Evolution of tangential contact force with time for Munjiza’s and the 
proposed method. 
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approach and the proposed approach, a contact test containing one 
square block (Block-1) and a rectangle block (Block-2) is performed (see 
Fig. 10a), where the edge length of Block-1 is 10 mm, and Block-2 has 
dimensions of 5 mm × 20 mm (height × width). Block-1, with a constant 
downward velocity of 0.01 m/s, is designed to penetrate the fixed Block- 
2 quasi-statically along the -y direction. No tangential displacement 
between the two blocks (along x direction) is allowed during the 
penetration. The parameters used for the model are as follows: Young’s 
modulus E = 30.0 GPa, Poisson’s ratio ν = 0.2, bulk density ρ = 2700 kg/ 
m3, finite element viscous damping coefficient η = 2.5 × 105 kg/m⋅s, 
contact penalty Pn = Ps = 30 GPa, friction coefficient μ = 0.2, and 
timestep Δt = 4.0 × 10–7 s. Gravity is not considered. Each block is 
meshed into two triangle finite elements, and the total simulation time is 
t = 0.032 s. As shown in Fig. 10b, for Munjiza’s approach, the tangential 
contact force gradually increases with time, which is inconsistent with 
the physics that no tangential contact force is supposed to occur between 
the two blocks due to the zero relative tangential displacement between 
them. Whereas for the proposed method, the tangential contact force 
remains unchanged at zero, validating the robustness of the proposed 
approach for tangential contact force calculation. 

3.6. Computational efficiency 

To further compare the computational efficiency between the 

proposed method and Munjiza’s method, we perform a series of uniaxial 
compression (UC) tests. The model consists of two loading plates and a 
rock specimen, and the width and height of the rock specimen are 50 
mm and 100 mm, respectively (see Fig. 11a). The axial loads are 
imposed on the specimens through the two loading plates moving in-
wards at a constant velocity of 0.05 m/s. Note that the loading rate can 
guarantee the quasi-static loading condition (Mahabadi et al., 2012; 
Tatone and Grasselli, 2015). The rock specimen is assumed to be ho-
mogeneous and isotropic, and the timestep is set as 1.5 × 10-8 s. We 
adopt the unstructured Delaunay triangulation mesh scheme to obtain 
reasonable fracture paths (see Fig. 11b). The input parameters for the 
FDEM simulations are tabulated in Table 2, which have been calibrated 
in previous work (Liu and Deng, 2019). 

For convivence, we define a variable reffi to denote the ratio of the 
computing time needed between Munjiza’s method and the proposed 
method, upon reaching the peak strength. The width of the rock spec-
imen and average element size are denoted as L (50 mm) and h, 
respectively. We vary the element size h to form models with different 

Fig. 11. (a) Model geometry and loading conditions. (b) Exemplar mesh with L/h = 50. (c) Comparison of the computational efficiency between the proposed 
method and Munjiza’s method with various average element sizes. L denotes the width of the rock specimen; h is the average element size; reffi is a ratio of the 
computing time needed between Munjiza’s method and the proposed method upon reaching peak strength. 

Table 2 
Input parameters in FDEM simulations for UC tests.  

Input parameters Values 

Young’s modulus, E (GPa) 12.5 
Bulk density, ρ (kg/m3) 2400 
Poisson’s ratio, ν 0.25 
Viscous damping coefficient, η (kg/m⋅s) 4300 
Tensile strength, ft (MPa) 2.0 
Cohesion, c (MPa) 18 
Internal friction angle, φ (◦) 30 
Mode I fracture energy, Gf1 (J/m2) 8 
Mode II fracture energy, Gf2 (J/m2) 60 
Normal contact penalty, Pn (GPa) 18 
Tangential contact penalty, Ps (GPa) 62.5 
Cohesive penalty, Pf (GPa) 125 
Sample-plate friction coefficient, k1 (-) 0.1 
Sample friction coefficient, k2 (-) 0.7  

Fig. 12. Comparison of stress–strain response in terms of the proposed method 
and Munjiza’s method. 
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element numbers and record the corresponding computation time. As 
shown in Fig. 11c, with the increase of L/h, i.e., a decrease of element 
size and thus an increase in the number of finite elements, the efficiency 
index reffi increases nonlinearly and reaches around 1.8 times when L/h 
= 70 (about 26,152 triangle elements). Therefore, the proposed method 
can slightly reduce computational cost compared to Munjiza’s method. 
Furthermore, to further compare the mechanical response of the UC tests 
between the proposed method and Munjiza’s method, we record the 
stress–strain curve obtained from the two methods. As shown in Fig. 12, 
the stress–strain curves of the two methods are generally consistent; 
however, more obvious stress fluctuations are encountered in Munjiza’s 
method, indicating the robustness of contact calculation associated with 
UC tests simulated by the proposed method. 

4. Application examples 

In this section, two application examples are conducted to demon-
strate the rationality of the proposed approach in simulating the stability 
of rock mass and rock slope. Since we mainly focus on testing the contact 
interaction between discrete bodies, fracturing rock blocks and joint 
cohesion are not considered in these cases. 

4.1. Failure of rock mass 

To demonstrate the failure mechanism of multiple block rock mass 
systems under gravity, we construct a rock mass model with dimensions of 
10 m × 20 m (width × height). As shown in Fig. 13, randomly distributed 
fractures are adopted to cut the rock into arbitrarily shaped blocks. 
Different friction coefficients (i.e., μ = 0, 0.1, 0.2 and 0.3) between rock 
blocks are used, and no cohesion between rock blocks is considered. The 
bottoms of the rock model are in direct contact with the ground (not 
shown here). The parameters used are as follows: Young’s modulus E =
30.0 GPa, Poisson’s ratio ν = 0.27, bulk density ρ = 2700 kg/m3, gravi-
tational acceleration g = -9.8 m/s2, contact penalty Pn = Ps = 90 GPa, finite 
element viscous damping coefficient η = 2.1 × 106 kg/m⋅s, timestep Δt =
7.0 × 10–6 s, and the total simulation time is 2.1 s. The model consists of 
5833 triangle elements with an average size of 0.3 m, and the unstructured 
Delaunay triangulation mesh scheme is adopted (see Fig. 13b). 

The collapse processes of the model with different block-block fric-
tion coefficients at various timestamps are presented in Fig. 14. It can be 
observed that the overall velocity of the rock masses gradually decreases 
with the increase of block-block friction coefficient, and only the upper 
rock blocks move when the friction coefficient is larger than 0.2. As the 
model evolves, the rock blocks are dumped laterally, and the velocities 
of the upper rock blocks are relatively larger than those at the bottom. 
The kinetic energy evolutions versus time are presented in Fig. 15. As the 
block-block friction coefficient increases from 0 to 0.4, the kinetic en-
ergy of the model gradually decreases. In addition, the kinetic energy of 
the models with zero block-block friction is obviously larger than others 
with nonzero friction coefficients, indicating that the contact friction 
can effectively dissipate the system’s kinetic energy. 

Fig. 13. (a) Model geometry of rock mass cut by randomly distributed frac-
tures. (b) Mesh. 

µ = 0.0 µ = 0.1 µ = 0.2 µ = 0.3
(a)

(b)

(c)

Fig. 14. The collapse process of the rock mass model with different block-block friction coefficients at various timestamps: (a) 0.42 s, (b) 0.63 s and (c) 0.84 s.  

W. Cai et al.                                                                                                                                                                                                                                     



Computers and Geotechnics 166 (2024) 105972

11

4.2. Vaiont landslide 

We chose the Vaiont landslide (Sitar et al., 1997) that occurred in 
northern Italy to further simulate the rock slope sliding process at the 
engineering scale. The profile of the Vaiont landslide before and after 
the slide is shown in Fig. 16a. It can be observed that the whole slope 
mainly consists of rocks and a sliding base, where the rocks will slip 
along the sliding surface under gravity, and the sliding base is 
completely fixed. The parameters used are as follows: Young’s modulus 
E = 10 GPa, Poisson’s ratio ν = 0.3, bulk density ρ = 2300 kg/m3, 
gravitational acceleration g = -9.8 m/s2, contact penalty Pn = Ps = 100 
GPa, and simulated timestep Δt = 2.0 × 10-4 s. The model consists of 
8750 triangle elements with an average size of 4.2 m, and the unstruc-
tured Delaunay triangulation mesh scheme is adopted (Fig. 16b). In 
addition, three monitoring points (denoted as MP-1, MP-2 and MP-3 in 
Fig. 16b respectively) are selected to track the evolution of their ve-
locities. Note that the rocks are meshed into discrete triangle elements 
without cohesion between them, and the friction coefficients between 
the rocks and between the rock and the sliding base are 0.15 and 0.20, 
respectively. The selection of friction coefficient and other input pa-
rameters refer to the previous works (Wei et al., 2019; Zheng et al., 
2014). In addition, to be consistent with the previous works (Wei et al., 
2019; Zheng et al., 2014), the effect of groundwater level on slope 
sliding is also not considered, and we mainly focus on the mechanical 
behavior of contact interaction during rock sliding. 

The resultant velocities of the three monitoring points with time and 
the snapshots of the slope sliding process are shown respectively in 
Fig. 17 and Fig. 18. It can be observed that the resultant velocities of the 
three monitoring points manifest a similar trend (Fig. 17), indicating 
that the rock slope moves forward as a whole. At the initial stage (see 

Fig. 18a), the resistance force of the rock slope stacked along the sliding 
surface is insufficient to maintain its stability, and the rocks slide down 
gradually. This rock slope movement is consistent with the increasing 
resultant velocities at the three monitoring points. As the model con-
tinues to evolve (Fig. 18b-c), the rocks first accumulate in the valley; 
then, their forward movement is obstructed by the slope on the other 
side of the valley. Meanwhile, the resultant velocities at the three 
monitoring points gradually decrease with time. The duration of the 
landslide process is around 30 s, which is consistent with that in the 
previous works (Wei et al., 2019; Zheng et al., 2014). When the sliding of 
the rock slope stops (Fig. 18d), the deposit profile of the simulated re-
sults mainly coincides with the actual topography. 

5. Conclusions 

In this study, within the framework of FDEM, a 2D energy-conserving 
contact model is adapted and implemented to simulate the contact 
interaction process between triangle elements. The magnitude of contact 
force is determined by the geometrical features of the overlapped region 
between contact couples, and the direction of contact force is obtained 
based on the gradient of contact potential field. The technique can not 
only guarantee energy conservation for elastic impacts, but also avoid 
the non-smooth transition of magnitude and direction of contact forces 
induced by the variation of element geometry in the original FDEM. 

A series of numerical experiments are conducted to validate the 
correctness of the proposed contact algorithm. The block collision tests 
are conducted and the accuracy of the proposed contact algorithm for 
momentum conservation is validated. The classic friction experiment 
also verifies the accuracy of normal and tangential contact force calcu-
lation in the proposed approach. Compared to the original FDEM, the 

Fig. 15. Kinetic energy evolution versus time for the models with different 
block-block friction coefficients (μ = 0, 0.1, 0.2 and 0.3). 

Fig. 16. (a) The typical cross-section of the Voiant landslide before and after sliding. (b) Mesh. Three monitoring points are denoted as MP-1, MP-2 and MP-3, 
respectively. 

Fig. 17. The resultant velocity at the three monitoring points with time.  
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mesh size sensitivity tests prove that the normal contact force obtained 
from the proposed method is entirely mesh-independent. In addition, 
the proposed contact algorithm also avoids the non-smooth transition of 
normal contact force direction and the inaccurate evaluation of 
tangential contact force. Without considering the definition of contact 
point potential, the proposed method can slightly reduce the computa-
tional cost of contact interaction compared to Munjiza’s method, and the 
stress–strain response of UC tests is more stable in the proposed method. 

Following this, two application examples are conducted to demon-
strate the rationality of the proposed approach for simulating rock mass 
and rock slope. The failure process of the rock mass model cut by 
randomly distributed fractures demonstrates that contact friction can 
effectively dissipate the system’s kinetic energy. For the Vaiont landslide 
model at the engineering scale, the simulated deposit pattern of the 
Vaiont landslide is generally consistent with the actual topography. The 
proposed contact model can be readily implemented in the framework of 
FDEM, and it may help enhance the applicability and accuracy of FDEM 
for rock fracturing simulation. Extensions of the contact algorithm to 3D 
will be reported in the near future. 
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