
Simulating the Wenchuan Earthquake with Accurate
Surface Topography on Sunway TaihuLight

Bingwei Chen∗‡, Haohuan Fu†‡‖, Yanwen Wei†‡, Conghui He∗‡, Wenqiang Zhang¶, Yuxuan Li∗‡,
Wubin Wan‡, Wei Zhang‡, Lin Gan∗‡‖, Wei Zhang§, Zhenguo Zhang§, Guangwen Yang∗†‡, Xiaofei Chen§

∗ Department of Computer Science and Technology, Tsinghua University
† Ministry of Education Key Lab. for Earth System Modeling, and

Department of Earth System Science, Tsinghua University
‡ National Supercomputing Center in Wuxi

§ Department of Earth and Space Sciences, Southern University of Science and Technology
¶ School of Earth and Space Sciences, University of Science and Technology of China

‖ Laboratory for Regional Oceanography and Numerical Modeling,

Qingdao National Laboratory for Marine Science and Technology

{chenbwei2012,weiyw17,heconghui,zhangwq.zhang,wanwuko,lin.gan27}@gmail.com,jflfy2255@163.com

{zhangwei,zhangzg,chenxf}@sustc.edu.cn,haohuan@tsinghua.edu.cn,ygw@mail.tsinghua.edu.cn,zhangwei@mail.nsccwx.cn

Abstract—This paper reports our efforts on performing a 50-m
resolution earthquake simulation of the Wenchuan Earthquake
(Ms 8.0, China) on Sunway TaihuLight. To accurately capture the
surface topography, we adopt a curvilinear grid finite-difference
method with a traction image free surface implementation
and redesign the algorithm to reduce memory access costs
for heterogeneous many-core architectures. We then derive a
performance model of our algorithm to guide and drive the
further optimization and tuning of various parameters using a
genetic algorithm. A data layout transformation is also proposed
to improve the direct memory access (DMA) efficiency further.
Our efforts improve the simulation efficiency from 0.05% to
7.6%, with a sustained performance of 9.07 Pflops using the
entire machine of the Sunway TaihuLight (over 10 million cores),
and a large-scale simulation of the Wenchuan earthquake with
accurate surface topography and improved coda wave effects.

Index Terms—Sunway TaihuLight, computational seismology,
earthquake ground motions, parallel scalability, accurate surface
topography

I. INTRODUCTION

Li, Bai, the well-known ’Immortal Poet’ in China’s history

(701-762 AD), wrote in one of his poems, ‘the steep road

in Shu, even more perilous than the road to the Green

Heavens’. Shu is the traditional name of Sichuan province,

which sits inside a large basin surrounded by mountains that

gradually grow from the basin to the Tibetan Plateau. While

such a unique geological environment provides some of the

marvelous scenery frequently depicted in masterpiece poets

and paintings in China, it also brings one of the most complex

domains for seismologists to investigate and to simulate.

Figure 1 shows the region of the Wenchuan earthquake. The

Wenchuan earthquake (Ms 8.0, 2008) occurred in one of the

critical points along the fault zone [1]. The damage caused by

the ground motion, the hill slide, as well as the barrier lake

formed after the earthquake, led to the losses of over 69,000

lives, and over 100 billion USD.

For seismologists who work on earthquake problems, nu-

merical simulation is an essential tool to investigate un-

derground geological structures and earthquake mechanisms.

(a)

102˚E 103˚E 104˚E 105˚E 106˚E

30˚N

31˚N

32˚N

33˚N

Chengdu

Deyang

Mianyang

Guangyuan

Suining

NeijiangLeshan

Nanchong

MeishanYa’an
Ziyang

Wenchuan

Luding

Longnan

Zhouqu

Maoxian

Songpan

Jiuzhaigou

Jinchuang

Xiaojin

Heishui
Maerkang

Ruoergai

Hongyuan

1000

2000

3000

4000

5000

6000

Topo (m)

(b)

Fig. 1: (a) The simulation region of the Wenchuan earthquake,

the red star indicates epicenter, and the black lines indicate the

faults in this area. (b) The grid discretization of a small chunk

of the 3D simulation region. The vertical transformation is

used to generate the grid.

However, the complicated scenario of the Wenchuan earth-

quake brings a number of tough challenges when compared

to that of the Tangshan earthquake that was already simulated

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 c©2018 IEEE

with high fidelity on Sunway TaihuLight [2]. To achieve an

accurate simulation of both the basin and the mountainous

regions, we need to cover a 3D domain × 640 km × 640

km × 100 km, which is roughly eight times the size of the

domain simulated in the Tangshan earthquake. Moreover, the

complex geology features of this region (an elevation range

of at least 7,000 meters) make it extremely important to

accurately describe the surface topography in order to capture

the local amplification effects and margin effects of basins.

To tackle these challenges, we design and develop a

Sunway-based software platform to perform high-resolution

simulations of the Wenchuan earthquake (Ms 8.0, China) with

accurate surface topography. Major innovations include:

• We build our simulation program − Seismic Wave Sim-

ulation with surface Topography (SWST), which uses

a curvilinear grid finite difference method (FDM) to

achieve accurate and stable free-surface boundary con-

dition, and uses the traction image method to describe

accurate surface topography. We also make algorithmic

adjustments to alleviate the memory bandwidth constraint

of this application.

• To derive the optimal configuration of the Wenchuan

Earthquake simulation with any given settings of resource

and problem size, we build a performance model to

identify the major factors that determine the performance

of the applications, as well as the tools to facilitate the

tuning process guided by the model.

• To further improve the efficiency of direct memory access

(DMA) operations, we propose a data layout transforma-

tion scheme to maximize the continuity of the data items

partitioned to each computing processing element (CPE)

thread.

While the simulation of the Wenchuan earthquake already

brings the challenge of the significantly large problem space

(640 km × 640 km × 100 km), our numerical method for

capturing the complex surface topography also increases the

number of unknowns per grid point. The SWST software

requires 53 unknowns for each grid point, which is roughly

twice the number required by the non-topography algorithm,

such as the AWP-ODC [3], [4], [5]. Therefore, when compared

to the Tangshan earthquake simulation on Sunway TaihuLight

in 2017, our target scenario requires roughly 16 times more

memory space and twice the bandwidth to achieve the same

performance for the same simulation resolution.

Combining both the algorithmic and architectural optimiza-

tions based on the memory and bandwidth features, we are

able to improve the computing efficiency of SWST from

0.05% to 7.6%. When using the entire machine of the Sunway

TaihuLight (over 10 million cores), SWST provides a sustained

performance of 9.07 Pflops, and is capable of resolving

a 10000 × 10000 × 2000 mesh, with over 110.5 trillion

unknowns in the seismic wave equation. Using SWST, we can

perform the Wenchuan Earthquake (Ms 8.0, 2008) simulation

with complex surface topography at 50-meter resolution for a

region of 640 km × 640 km × 100 km.

II. BACKGROUND

A. Existing Efforts
In recent decades, many different methods have been pro-

posed and applied in large scale earthquake simulation:

1) Spectral element method (SEM): SEM is a high order

finite element method (FEM) [6], [7]. In 2003, American and

Japanese scientists used 5.5 billion grid points on 1944 cores

of the Earth Simulator, achieving a performance of 5 Teraflops.

This work was later evolved into the SPECFEM3D package

that further integrated more useful features [8], [9], [10]. In

2008, by using 28,000 processors on Jaguar, SPECFEM3D

obtained a sustained performance of 35.7 Tflops. In 2012,

another effort [11] that ported SPECFEM3D to a large GPU

cluster with 896 GPUs of Cray XK6 employed 8 billion grid

points and reached 135 Tflops.

2) DG-FEM: In 2014, German scientists created a simu-

lation software called SeisSol [12], [13]. With 191 million

tetrahedrons running on 1,597,440 cores of Tianhe-2, the 1992

Landers (M7.2) Earthquake was simulated successfully with

a performance of 8.6 Pflops. In 2017, EDGE was created

[14], with 341 million tetrahedrons, a performance of 10.4

Pflops was achieved. In the same year, the 2004 Sumatra

Megathrust Earthquake was successfully simulated [15] using

221 million tetrahedrons, providing a sustained performance

of 1.59 Pflops on Haswell processors. DG-FEM converts the

numerical problem into compute bound dense matrix opera-

tions, but the high order method also increases the memory

demand and the computational complexity, limiting the largest

size of solvable problem and time-to-solution.

3) Implicit FEM: In 2014, scientists in Japan built the

GAMERA system [16], [17], [18], which provides a sustained

performance of 1.97 Pflops when processing 27 billion DOFs

with 663,552 cores on the K computer. They built the GOJIRA

system [19] in the following year, processing 1.08 trillion

DOFs with the entire K computer, achieving a performance

of 1.97 Pflops. Implicit FEM can gain larger time increments

by adding some extra computation in each time step. However,

the implicit FEM also increase memory requirements and

computational costs, making it difficult to tackle a larger

simulation area (hundreds of kilometers).

4) Staggered FDM: Staggered FDM is popular due to

its straightforward and parallel-friendly implementation. The

Southern California Earthquake Center (SCEC) developed

AWP-ODC, which tackled 859 billion grid points in 2013,

with a performance of 2.3 Pflops [16]. In 2017, researchers

from Tsinghua University ported and redesigned AWP-ODC

for Sunway TaihuLight, achieved a performance of 15.2 Pflops

when simulating the Tangshan earthquake using 3.99 trillion

grid points [2]. A balance between the computational cost

and the simulation capability is maintained for large-scale

simulation using AWP-ODC. However, for the numerical

simulation of the Wenchuan Earthquake, which involves an

altitude variation in the range of 7 kilometers, it is too costly,

if not completely impossible, to describe the complex surface

using a staggered grid discretization.

5) Summary: After considering all these different factors,

we decided to adopt the curvilinear grid FDM, to achieve

both an accurate description of the complex topography, which

is a crucial factor for simulating the Wenchuan earthquake

accurately, and efficient utilization of the heterogeneous many-

core platforms.

B. Main Challenge of the architecture
Sunway TaihuLight supercomputer was the first system in

the world to have a peak performance of over 100 Pflops. The

computing power of TaihuLight comes from China’s custom

SW26010 CPU [20], [21]. Fig 2 shows the architecture of

SW26010. One CPU chip contains four core groups (CG),

each of which includes one management processing unit

(MPE), one computing processing element cluster with 8 by

8 computing processing elements (CPE), and one memory

controller. In general, the MPE is suitable for controlling

while the CPE is suitable for computing. These four CGs

are connected via the network on chip (NoC). With 260

processing elements in total, one SW26010 can provide a peak

performance of over 3 Tflops. With 40,960 CPUs (10,140,000

cores), the TaihuLight supercomputer can provide a peak

performance of 125 Pflops.

Core Group 2

Transfer
Network

MPE 8*8 SPE
Mesh

PPU

iMC

Memory

Core Group 0

MPE8*8 SPE
Mesh

iMC

PPU

Memory

Core Group 1

MPE8*8 SPE
Mesh

PPU

Core Group 3 iMC

Memory

MPE 8*8 SPE
Mesh

PPU

iMC

Memory

NoC

Computing
Core

LDM

Column
Communication Network

Control
Network

Registers

Row
Communication

Network

Transfer Agent (TA)

Memory Level

LDM Level

Register Level

Computing Level

Fig. 2: The Architecture of SW26010 [21]

As for the memory hierarchy, each CG includes three levels.

On the first level, all CPEs share the 8-GB DDR3 memory

through the DDR3 interface. On the second level, each CPE

has an independent 64-KB Scratch Pad Memory (SPM), which

can be used as a user-controlled cache. The peak bandwidth

of DMA operations to and from the DDR3 memory is roughly

30GB/s per CG. The effective bandwidth depends on the block

size of each DMA transaction. The third level consists of 32

256-bit registers.
In summary, the significant challenges of the architecture

are mostly because of the memory and bandwidth features.

With the increasing requirements in memory capacity and

bandwidth of modern scientific computing applications, each

of the TaihuLight nodes only provides 32 GB memory and

around 120 GB/s bandwidth, which is limited compared with

other many-core architectures that usually contain 300GB/s to

500 GB/s of bandwidth. Furthermore, each CPE only provides

a 64-KB scratchpad buffer, so the design of a user-controlled

cache scheme has to be done.

III. A MEMORY-ORIENTED REDESIGN OF THE

CURVILINEAR FDM FOR THE SUNWAY ARCHITECTURE

A. Collocated FDM with Curvilinear Grid
In 3-D inhomogeneous isotropic elastic media, the propaga-

tion of elastic waves is governed by the elastodynamic equa-

tions (including the momentum equation and the generalized

stress-strain relationship), which can be written as a first order

velocity-stress equations, i.e.,

ρvi,t = σij,j + fi, (1)

σij,t = λvk,kδij + μ(vi,j + vj,i), (2)

where λ and μ are the Lamé parameters in isotropic media.

To write the equations as a compact matrix form (ignoring

the source term), we have:

∂W

∂t
= A

∂W

∂x
+B

∂W

∂y
+C

∂W

∂z
. (3)

The unknowns that need to be solved are the wavefield, which

includes both the velocity field, and the stress field:

W = (vx, vy, vz, σxx, σyy, σzz, σxy, σxz, σyz)
T . (4)

In this paper, we use (x, y, z) to denote the coordinates in

(1) (2)

Fig. 3: (1) Curvilinear grid transformation; (2) Traction image

method.

physical space, and (ξ, η, ζ) to denote coordinates in com-

putational space (as shown in Fig 3(1)). Using a curvilinear

coordinate transformation, the irregular physical space can be

transformed into a regular computational space:

x = x(ξ, η, ζ), y = y(ξ, η, ζ), z = z(ξ, η, ζ). (5)

Using the finite difference method to calculate the coordinate

transformation coefficients, we can then obtain covariant and

contravariant basis vectors in the curvilinear coordinate sys-

tem. Converting the derivatives of the physical space into the

derivatives of the computational space through the chain rule

[22], the compact matrix form of elastodynamic equations can

be written as:

∂W

∂t
= Ã

∂W

∂ξ
+ B̃

∂W

∂η
+ C̃

∂W

∂ζ
. (6)

We compute the derivatives in the computational domain

(ξ, η, ζ), but solve the wavefield in the physical domain

(x, y, z). We adopt a collocated-grid scheme instead of the

staggered-grid scheme for the convenience of coordinate trans-

formation and boundary conditions. The spatial difference op-

erator is split into the forward and backward one-sided differ-

ence operators, which are alternately used in Runge-Kutta time

marching schemes. The dispersion relation preserving (DRP)

method is used to optimize the dispersion and dissipation error

of the one-sided differences in the MacCormack-type schemes.

This dispersion and dissipation optimization scheme is called

the DRP/opt MacCormack scheme and has been used by

Zhang & Chen [23], [24] to model 2-D and 3-D seismic waves

in the presence of surface topography. If the three directional

derivatives of DRP/opt MacCormack scheme are calculated

TABLE I: A summary of existing work of large-scale earthquake simulations on supercomputers. The numbers are obtained

from the published papers. Unreported values are labeled as ‘–’. For the numercial method, FD refers to finite difference

method, SEM refers to the spectral element method, and DG-FEM refers to the discontinuous Galerkin finite element method.

Work Year Machine Arch Scale # grid points Flops Mem Method
Surface

Topography
SPECFEM3D 2012 Cray XK6 Fermi GPU 896 GPUs 8 billion 135 Tflops 3.5 T SEM Yes

EDGE 2017 Cori-II Xeon Phi 612,000 cores
341 million

10.4 Pflops 32 TB DG-FEM Yes
tetrahedrons

GOJIRA 2015 K Computer SPARC64 663,552 cores 270 billion 1.97 Pflops –
implicit

Yes
FEM

AWP-ODC 2017 Sunway SW26010 10,014,000 cores 3.99 trillion 15.2 Pflops 892 TB FD No

Our work 2018 Sunway SW26010 10,014,000 cores 4.3 trillion 9.07 Pflops 902 TB
Collocated

Yes
CG FD

by a forward operator in the ξ-axis, a backward operator in

the η-axis, and a forward operator in the ζ-axis, respectively,

then the 3D operator will be written as (take LFBF as an

example):

L̂FBF (W) = ÃLF
ξ (W) + B̃LB

η (W) + C̃LF
ζ (W). (7)

To avoid numerical bias, we mix the forward and backward

difference operators for the ξ-,η-, ζ-derivatives, resulting in 8

possible pairs of the 3-D biased difference operators in the

spatial domain, and create a cycle of 8 time steps to update

the wavefield [22]. In the time domain of step n to n + 1,

the fourth-order Runge-Kutta scheme evaluates the wavefield

at different intermediate times between nt and (n+ 1)t:

W(1) = Wn, (8)

W(2) = Wn + α2ΔtL̂FFF (W(1)), (9)

W(3) = Wn + α3ΔtL̂BBB(W(2)), (10)

W(4) = Wn + α4ΔtL̂FFF (W(3)), (11)

Wn+1 = Wn +Δt[β1L̂
FFF (W(1)) + β2L̂

BBB(W(2))

+ β3L̂
FFF (W(3)) + β4L̂

BBB(W(4))], (12)

these forward and backward one-sided difference operators

will be interchanged at the next step of the Runge-Kutta

update.

The implementation of a free surface boundary condition

is an essential issue in seismic wave simulations. For finite

difference schemes with regular grid discretizations, the im-

plementation of a free boundary condition can be directly

manipulated in the wavefield components. For example, the

stress image method directly mirrors the stress component

within the finite difference stencil with respect to the free

surface. However, in curvilinear grids, the traction image

method is used to update the velocity field. As a result,

we cannot directly apply the boundary condition on each

wavefield component since traction is the combination of the

stress components (as shown in Fig 3(2)):

Tx = (ζ,xσxx + ζ,yσxy + ζ,zσxz)
1

|Δζ| = 0, (13)

Ty = (ζ,xσxy + ζ,yσyy + ζ,zσyz)
1

|Δζ| = 0, (14)

Tz = (ζ,xσxz + ζ,yσyz + ζ,zσzz)
1

|Δζ| = 0, (15)

Tx|k0+n = −Tx|k0−n, Ty|k0+n = −Ty|k0−n,

Tz|k0+n = −Tz|k0−n. (16)

As each traction force component is a combination of three

stress components, when updating the velocity field at the

boundary, the momentum equation must be written in a

conservative form to facilitate the application of the traction

image method. In other regions with no boundary points, the

normal form of the elastodynamic equations is used to update

the wavefield.

B. Memory-Oriented Algorithm Redesign
To make the algorithm more suitable for the on-chip

heterogeneity of the SW26010 processors, the algorithm is

redesigned to make the best of the memory bandwidth.
Based on equations 8-12, we use mW to represent the

wavefield of the last timestep, W to represent the wavefield

of the current timestep, hW to represent the derivatives of

the wavefield, and tW to represent the wavefield of the next

timestep. As for the direction of the difference operator, we

mark it as a boolean variable Flag. The algorithm in each

time step is shown in Algorithm 1.
The first naive implementation is to design seven ker-

nels including four for updating variables in space domain

(Calc DerivV , Calc DerivS, Tract Img, V el Low), and

three for updating variables in time domain (RK begin,

RK inner, RK end), as shown in Algorithm 1. In each

CG, the MPE manages the boundary exchange and the CPEs

process the computation for the seven kernels. However, such

implementation has some drawbacks. First, different compu-

tational kernels in spatial domain usually result in different

calculation areas that require different partition schemes to

keep acceptable efficiencies. Second, each kernel needs to

load W (variables stand for wave field) from memory to SPM

due to the limited memory size, which leads to the repetitive

consumption of the bandwidth. Third, the surface layer of

only three points in the z-axis results in a small block size of

DMA operations and low bandwidth utilization in two of the

space domain calculating (Tract Img and V el Low) kernels.

To resolve these issues above, by analyzing the dependencies

of all variables among these kernels, we merge four spatial

domain kernels into one named as DRP MacCormack. Af-

terward, we only load W one time at the beginning, and store

Algorithm 1 Runge Kunta Synthesis for Collocated FDM with

Curvilinear Grid
1: RK Init: mW ← W
2: DRP MacCormack: hW ←
3: Calc DerivV(F lag,W.S)
4: Calc DerivS(F lag,W.V)
5: Tract Img(F lag,W.S)
6: Vel Low(F lag,W.V)
7: RK begin: W ← mW + α ∗ hW
8: tW ← mW + β ∗ hW
9: Exchange: Exchange Boundaries(W)

10: DRP MacCormack: hW ←
11: Calc DerivV(F lag,W.S)
12: Calc DerivS(F lag,W.V)
13: Tract Img(F lag,W.S)
14: Vel Low(F lag,W.V)
15: RK inner: W ← mW + α ∗ hW
16: tW+ = β ∗ hW
17: Exchange: Exchange Boundaries(W)
18: DRP MacCormack: hW ←
19: Calc DerivV(F lag,W.S)
20: Calc DerivS(F lag,W.V)
21: Tract Img(F lag,W.S)
22: Vel Low(F lag,W.V)
23: RK inner: W ← mW + α ∗ hW
24: tW+ = β ∗ hW
25: Exchange: Exchange Boundaries(W)
26: DRP MacCormack: hW ←
27: Calc DerivV(F lag,W.S)
28: Calc DerivS(F lag,W.V)
29: Tract Img(F lag,W.S)
30: Vel Low(F lag,W.V)
31: RK end: W ← tW + β ∗ hW
32: Exchange: Exchange Boundaries(W)

Algorithm 2 Runge Kunta Synthesis for Collocated FDM with

Curvilinear Grid
1: mW ← W
2: tW ← hW
3: for istep ∈ [0, 3] do
4: F lag = generateFlag(istep)
5: hW ← MainCalculateKernel(F lag, istep,W)
6: swap addr(hW,W)
7: Exchange Boundaries(W)
8: end for

hW one time at the end. However, after DRP MacCormack
finished, the following temporal domain kernel needs to load

W , hW , and a number of other variables for the second time,

i.e., consuming the memory bandwidth for the same data items

for second time.

To further reduce the redundant memory access, we merge

DRP MacCormack and three temporal domain kernels into

a new kernel by adjusting the calculation order. The new

algorithm is shown in Algorithm 2 and Algorithm 3. The major

modifications include: (1) exchange the order of calculating

tW and W ; (2) storing the final result in hW to resolve the

dependencies of different grid points in a loop (we need to

swap the address of W and hW afterward). As shown in

Algorithm 3, the final algorithm only needs to load and store

the arrays once.

For the matrices that need to reside in the SPM dur-

ing the computation of specific kernels (such as the

matV x2V z,matV y2V z,matF2V z matrices required for the

V el Low kernel, which derive the vertical derivative indirectly

by other-orient variables), we adopt an on-the-fly compute

Algorithm 3 MainCalculateKernel

1: for (i, j, k) ∈ Whole Region do
2: if (i, j, k) ∈ Underground Region then
3: hW ← Calc Deriv(F lag,W)
4: end if
5: if (i, j, k) ∈ Surface Region then
6: hW ← Tract Img(F lag,W)
7: end if
8: tW+ = β ∗ hW
9: if istep != 3 then

10: hW ← mW + α ∗ hW
11: else
12: hW ← tW
13: end if
14: end for

strategy, to further reduce the memory access counts by

recomputing these matrices at the initialization stage.

IV. AUTO-TUNED PROCESS/THREAD PARALLELIZATION

SCHEMES DRIVEN BY AN ANALYTIC PERFORMANCE

MODEL

A. Our General Parallelization Scheme
In order to scale our large-scale simulation to over 10 mil-

lion cores, we propose a hierarchical decomposition scheme

with multiple levels, as shown in Fig 4. First, the complex

surface topography is transformed into a regular 3D mesh

using our proposed Curvilinear FDM, which enables the

regular decomposition hereafter. Second, the entire problem

domain (e.g., x1 × y1 × z1)is decomposed via a 3D MPI

decomposition scheme (e.g. px1 × py1 × pz1), with each sub-

domain (e.g., x2 × y2 × z2) being assigned to one CG. Sub-

domains communicate with each other via asynchronous MPI

routines.

In each CG, the sub-domain requires further partitioning

(e.g., px2×py2×pz2) as the SPM within each CPE is limited

and generally cannot accommodate the entire sub-domain. The

sub-domain is further decomposed into a sub-volume of size

(x3×y3×z3). The 8×8 CPE cluster can further be rearranged

(e.g. px3×py3×pz3) to process the computation. Note that the

CPEs located in the same row or same column can share data

via the register communication (RC) feature, which enables

efficient data exchange among CPEs. Each CPE is responsible

for processing a small volume of size (x4 × y4 × z4). In our

case, we assume that the memory continues along the z-axis.

Therefore, z4 is the maximal number of elements that can be

transferred between SPM and main memory via DMA. The

DMA bandwidth to and from SPM is denoted as vBi(z), and

vBo(z), respectively.

For a specific setting of the problem size and the available

resources of the machine, it is usually difficult to identify the

optimal configuration parameters. To derive suitable configu-

rations to simulate the Wenchuan earthquake efficiently when

given an arbitrary problem size and resource quantity, we build

a performance model driven auto-tuning framework.

The performance model is the basis of the automatic tuning

tool. The performance model at the very top level can be

described as follows:

Ttotal = T0 +NT ∗ Titer +NIO ∗ TIO. (17)

Fig. 4: The general parallelization scheme to map the earth-

quake simulation to millions of cores.

The cost of a task includes an initial process, loops of itera-

tions, and IO. T0 refers to the initialization, which is invoked

once. IO in this work is mainly used for storing checkpoints,

which need to dump almost all the data from the memory into

the filesystem. NIO means the number of checkpoints, while

TIO means the cost of each checkpoint. We adopt balanced

IO, group IO and lossless data compression techniques to

guarantee the performance of IO transmission. The large

timestep NT would make the iteration time NT ∗ Titer the

major factor to optimize, in which Titer means the cost for

each iteration. The detailed model is decomposed into the

process level and thread level, discussed in the following

sections.

B. Process-Level Performance Model

x

yz

x

yz

calculate
Inner region

inner
region

inner halo
region

outer halo
region

Inner
region

8x8 CPE cluster

8x8 CPE cluster x-y inner-halo region

y-z inner-halo region

Fig. 5: Asychronize MPI

On the MPI process level (first level), according to Fig 5, we

decompose the 3D region into three layers (outer halo region,

inner halo region and inner region) and decompose MPI into

several parts. The cost of each iteration contains the inner-halo

region computation (Tinner−halo), data packing (Tpack), MPI

(TMPI), data unpacking (Tunpack) and inner region calculation

(Tinner). In Asynchronous MPI, the inner region computation

shall be performed by CPEs, and can be overlapped by MPI

performed by MPE, so the cost of the kernel is:

Titer = Tinner−halo+Tpack+max(Tinner, TMPI)+Tunpack.
(18)

The cost of computing 6 inner-halo regions is described as

follows:

Tinner−halo = 2Tc(x2, y2, NvarH),

+ 2Tc(x2, H,Nvarz2) + 2Tc(H, y2, Nvarz2) (19)

where Tc(x, y, z) refers to the computation time for a domain

of (x × y × z), Nvar refers to the number of unknowns per

grid point (the data is arranged in array of structures), and H
refers to the thickness of the halo region.

The CPEs packing six inner-halo regions via DMA is

described on the left part in Fig 5. We map each region to

the CPE cluster, for example, we map the y-z plane of fore-

and-aft inner-halo regions to 8×8 CPE cluster and map the x-y

plane of upward and downward inner-halo regions to 8×8 CPE

cluster. Data packing is a discontinuous memory copy process.

The key is the DMA memory bandwidth from memory on

CG to SPM on CPE, which is according to the block size of

one continuous access. The cost of data packing is shown as

follows:

Tpack = 2NvarH(
x2y2

vBi(NvarH)
+

x2z2
vBi(Nvarz4)

+
y2z2

vBi(Nvarz4)
), (20)

where vBi(z) is the DMA memory bandwidth (from memory

on CG to SPM on CPE) function with respect to z.

The cost of MPI communication is:

TMPI = 2NvarH
x2y2 + x2z2 + y2z2

vM
, (21)

where vM means the average MPI bandwidth. Similar to

the process of inner-halo region computation, the cost of

computing inner region is shown as follows:

Tinner = 2Tc(x2 − 2H, y2 − 2H,Nvar(z2 − 2H)). (22)

The cost of data unpacking is opposite to data packing:

Tunpack = 2NvarH(
x2y2

vBo(NvarH)
+

x2z2
vBo(Nvarz4)

+
y2z2

vBo(Nvarz4)
), (23)

where vBo(z) is the DMA memory bandwidth (from SPM

on CPE to memory on CG) function with respect to z.

C. Thread-level Performance Model
On the CPE thread level, to achieve the best utilization of

the 64 CPEs within one CG, we design three different kinds of

schemes: a pure DMA scheme (TPD), a 2D register communi-

cation (RC) scheme (T2DR), and a 1D register communication

scheme (T1DR). Different kinds of data domain sizes and

partitions will lead to different decisions among these three

schemes. So the computational cost of the optimal scheme

is:

Tc(x2, y2, z2) = px3py3pz3min(TPD(x3, y3, z3)

T2DR(x3, y3, z3), T1DR(x3, y3, z3)). (24)

A detailed discussion of these schemes is shown below.

(1) Pure DMA scheme: In thread-level optimization, the

CPE needs to fetch the region (x4 + 2H) by (y4 + 2H) by

Nvar(z4 + 2H), compute and then write back the region x4

Fig. 6: Three thread-level schemes.

by y4 by Nvarz4 to memory, which is shown in part (b) of

Fig 6. Due to the asynchronous DMA, the computational time

will be partly overlapped by DMA. The cost of this process

is:

TPD(x3, y3, Nvarz3) = px3py3pz3max(

Nvar(x4 + 2H)(y4 + 2H)(z4 + 2H)

vBi(Nvarz4 + 2H)

+
Nvarx4y4z4
vBo(Nvarz4)

,
Nflop

vflop
), (25)

where Nflop is the number of floating point operations within

the kernel and vflop is the number of real floating point

operations per second on CPE.

(2) 2D register communication (RC) scheme: using pure

DMA, it is necessary for each CPE to read four halo bound-

aries to compute the inner region, which will lead to low data

utilization. To solve this problem, we design a 2D register

communication (RC) scheme. Each CPE reads only the inner

region, and then exchange the halo boundaries by register

communication with its neighbor CPEs, which is shown in

part (c) of Fig 6. This scheme can effectively improve the

data utilization. However, CPEs located at four boundaries

still need to read halo boundaries by DMA, and the band-

width of DMA when reading upper and lower boundaries is

vBi(NvarH), which is small and largely constrained by the

thickness of halo region and would lead to a large latency for

the whole kernel. So it is unclear that this scheme is better

than the pure DMA scheme. The cost of this scheme includes

RC and DMA for the inner region and extra boundaries, which

is shown below:

T2DR(x3, y3, Nvarz3) = max(
Nvarx3(y3z3 + 2Hz3)

vBi(Nvarz4)

+
2NvarHx3y3
vBi(NvarH)

+
2NvarHx3(y3 + z3)

vR

+
Nvarx3y3z3
vBo(Nvarz4)

,
Nflop

vflop
), (26)

where vR is the speed of RC.

(3) 1D register communication scheme: although 2D register

communication communicates in the 2D pattern, it still in-

volves complicated issues. As mentioned above, CPEs located

at the four boundaries need to read additional halo boundaries

through DMA, which will lead to a large latency. To alleviate

this issue, as shown in part (d) of Fig 6, we use each CPE to

read an area of x4y4(z4+2H), and then exchanges the left and

right halo regions by RC with its left and right neighbor CPEs.

In addition, the leftmost and rightmost CPEs needs to load halo

boundaries by DMA. This scheme is quite reasonable, but it

reads more data than the 2D register communication scheme

and so it is still not clear that this is the optimal choice.
The cost for this scheme is shown below:

T1DR(x3, y3, Nvarz3) = max(
Nvarx3(y3z3 + 2H(z3 + 2H)

vBi(z4 + 2H)

+
2NvarHx3(z3 + 2H)

vR

+
Nvarx3y3z3
vBo(Nvarz4)

,
Nflop

vflop
). (27)

D. Auto-Tuning Tool Using a Genetic Algorithm
Based on our performance model, we can describe the

performance and bandwidth of a simulation task. But with

so many tuning parameters it is hard for us to find the

optimal configuration easily. Therefore, we create an automatic

tuning tool based on our performance model and a genetic

algorithm([25], [26]).
The major constraints for optimization are as follows: (1)

the available resources of the computing nodes, memory size,

and SPM space; (2) the size in a specific axis of the upper

level is larger than the lower level; (3) all sizes must be positive

integers.
The tuning tool is designed to find the optimal con-

figuration parameters when given specific set of resources

and problem size, The key unknowns are partition scheme

px1, py1, pz1, px2, py2, pz2, px3, py3, pz3. We use genetic algo-

rithm (GA) to solve this optimal problem ([25], [26], [27],

[28]), which is shown in Fig 7. The genetic representation

is the set of unknowns in binary represenation with a search

range within the bounds, and the fitness function is the cost

of the whole program. The process is shown as follows:

Initial Random Population
(Random configuration)

Resources Bounds detect

Fitness Evaluation

Selection Operation

Crossover

Mutation

New generation

Random based on weighted fitness

Nodes Mem

SPM

IO

Fig. 7: Auto tuning based on a genetic algorithm.

For example, we use the auto-tuning tool before our 50-

meter resolution simulation. First, given the resources of

nodes, memory size, problem size, we produce the first random

population of 500 individuals within the bounds, each of

which is a set of 9 unknowns. Then we apply the crossover

operators with a probability of 0.1 to every two individuals,

the mutation with a probability of 0.01 to every gene, and the

copy selection operations with a probability of 0.01 to every

individual randomly, respectively. Now we are able to produce

a new generation with better characteristics than previous

generations. After 400,000 iterations, the optimal configuration

parameters can be found in the last generation. The auto-

tuning tool costs about 6 hours, which is near the cost of

one simulation, but saves weeks over exhaustively searching

all possible parameters for an optimal parameter combination.

V. DATA LAYOUT TRANSFORMATION

One tough challenge for earthquake simulations is the large

number of unknowns that needs to be processed for each grid

point. For the AWP-ODC linear and nonlinear versions, each

grid point involves 30 to 40 unknowns. In our curvilinear

grid FDM, the number of variables per grid point is further

increased to over 50. Considering the DMA behavior for

TaihuLight, the co-located array fusion strategy proposed in

[2] is a common approach to effectively improve the DMA

bandwidth utilization. However, such a strategy requires that

the set of fused arrays share exactly the same pattern of

reads and writes. Some variables such as the density(ρ) are

independent of other variables, resulting in a terrible DMA

bandwidth and computing efficiency as the co-located array

fusion trick does not work for them. For these different sets

of variables, we propose a layout transformation scheme for

those variables to improve DMA bandwidth effectively. The

basic idea for the layout transformation is shown in Fig 8.

In the original parallelization scheme, each CPE thread would

read the corresponding 2D data block. Such a straightforward

parallel decomposition, as shown in part (b) of Fig 8, would

break the continuity of the memory space, and thus signifi-

cantly reduce the efficiency of DMA instructions.

To keep the continuity of the data items in each CPE

thread, and to improve the DMA operation efficiency, at the

initialization stage, we use 64 CPEs to perform the layout

transformation of the corresponding memory region in a

parallel way. The main transformation mechanism is shown in

part (c) of Fig 8. The data layout transformation is performed

for each CG independently.

To ensure the continuity of memory access during the com-

putation, the memory region for each CPE thread is enlarged

to include halo areas. The first step of the transformation is

to read data from memory to SPM. When performing the

transformation, if the CPE thread was sitting at the boundary

of the CPE cluster, it needs to read the extra halo points

from the memory. Otherwise, the CPE thread acquires the halo

points from the neighboring threads using the unique register

communication feature. Now the SPM has a continuous data

layout, and the MPE allocates the extra space to store the

transformed data.

After the layout transformation, the CPE can read in the data

to compute with a block size of the entire y − z plane while

the original block size of DMA is just one stripe. If the array

only needs to be read and does not need to be updated, we

only need to transform once at the initial stage. As shown in

part (d) of Fig 8, if data needs to be updated in each iteration,

we would need to apply the reverse process and then write

the whole region (including yellow region and blue region)

back to memory to keep the new structure. The data size for

transmission is larger than the original scheme (the yellow

region), which will eliminate the advantage of this scheme.

So the data transformation scheme is only suitable for the

density(ρ) read-only array, enlarging the DMA bandwidth.

VI. PERFORMANCE AND SCALABILITY

A. How Performance was Measured
The performance is measured using the average time for one

time step, by running the benchmark test for 100 time steps. In

formula 17, for example, when running a 50-meter resolution

simulation on the whole machine of Sunway TaihuLight, Ttotal

is about 5 hours, the initialization time T0 is about 10 minutes.

We usually have one checkpoint during the whole simulation,

where TIO is about 10 minutes, and the other IO time can

be negligible when hundreds of thousands of time steps are

involved. The initialization time and IO time account for only

6.7% of the total time. So we just focus on the iteration time in

the following sections. The number of floating point operations

is measured using two different methods, namely by counting

all floating point arithmetic instruction in the assembly code as

well as using the hardware performance monitor, PERF, which

is provided along with the Sunway TaihuLight compiler. The

two different methods generate similar operation counts, and

we use the PERF tool to measure the average floating point

operations in this study.

B. Kernel Optimization Results
The Runge-Kunta synthesis step is the most time-consuming

part (the redesigned function that integrates seven different

kernels) of the entire program. Fig. 9 demonstrates the per-

formance and bandwidth improvements for different kinds

of optimization methods on different resolutions. With the

resolution becoming higher (generally more data times to

process per thread), the performance benefits of different

optimization methods also increase. We set the ‘MPE’ version

as the starting point of the performance curve, which only

uses single MPE in each CG to perform the computation. The

‘naive’ version performs a straightforward mapping from a

single MPE to 64 CPEs. Other bars indicate the performance

improvements after applying different optimization strategies

accordingly. After performing the memory-oriented algorithm

redesign, the performance has improved by roughly four times

based on different resolutions. With the tuned parameters for

both process and thread configurations, we can further improve

the performance by another 1.5 times. After applying the data

layout transformation, the performance was finally improved

by another 1.26 times. The final design is 152.9 times faster

than the ‘MPE’ version and demonstrates a memory bandwidth

CPE CPE CPE CPE

CPE CPE CPE CPE

CPE CPE CPE CPE

CPE CPE CPE CPE

a(1) f(11) k(21)

b(2) g(12) l(22)

c(3) h(13) m(23)

d(4) i(14) n(24)

e(5) j(15) o(25)

A(6) F(16) K(26)

B(7) G(17) L(27)

C(8) H(18) M(28)

D(9) I(19) N(29)

E(10) J(20) O(30)

u(0) v(7) w(14)

a(1) f(8) k(15)

b(2) g(9) l(16)

c(3) h(10) m(17)

d(4) i(11) n(18)

e(5) j(12) o(19)

A(6) F(13) K(20)

e(100) J(107) O(114)

A(101) F(108) K(115)

B(102) G(109) L(116)

C(103) H(110) M(117)

D(104) I(111) N(118)

E(105) J(112) O(119)

U(106) V(113) W(120)

CPE cluster

CPE (3,8)

CPE (2,8) transform

transform

Exchg Halo

Exchg Halo

u(0) v(7) w(14)

a(1) f(8) k(15)

b(2) g(9) l(16)

c(3) h(10) m(17)

d(4) i(11) n(18)

e(5) j(12) o(19)

A(6) F(13) K(20)

e(100) J(107) O(114)

A(101) F(108) K(115)

B(102) G(109) L(116)

C(103) H(110) M(117)

D(104) I(111) N(118)

E(105) J(112) O(119)

U(106) V(113) W(120)

Fig. 8: Data layout transformations

utilization of 22 GB/s bandwidth, which is about 73.3% of the

theoretical peak.

Fig. 9: The speedup and DMA bandwidth of the Runge-Kunta

synthesis step, when applying different optimization methods

under the guidance of the performance model. ‘MPE’ stands

for the original version that uses MPI only; ‘ARD’ means

algorithm redesign, ‘NAV’ refers to naive partition scheme,

‘ATT’ means auto tuning tool optimization, ‘DLT’ refers to

data layout transformation optimization.

C. Weak Scaling Results
Fig. 10 demonstrates the weak scaling results on 25-m

and 20-m resolution cases. For both cases, each MPI process

(corresponding to one CG) computes a sub-domain with the

size of 120 × 120 × 2000. The decomposed mesh size

is also used for the scientific simulations discussed later in

Section VII. The total number of the grid points in this domain

becomes 120 × 120 × 2000 × N , where N is the number of

CGs. In the benchmark tests, we see a close-to-linear speedup

from 900 processes to 160,000 processes for the weak scaling.

So the proposed process-level optimization for communication

model is proved to be highly efficient. Since the application

performs only nearest-neighbor communications, we would

expect a continued linear scaling when further applying the

entire machine.

Number of processes (thousand)
0.9 1.6 2.5 3.6 4.9 6.4 16.9 32.4 48.4 6779 96 120 160

0.03

0.09
0.13

0.23

0.62

1.2
1.7
2.5

 5
 8
 10

25m resolution, peak: 9.07 Pflops, Mem usage: 70.2%, Para eff: 99.7%
60m resolution, peak: 8.09 Pflops, Mem usage: 51.3%, Para eff:99.5%

Fig. 10: The weak scaling results of the simulation, scaling

from 900 to 160,000 MPI processes. Each CG corresponds to

one MPI process.

D. Strong Scaling Results

Fig. 11 shows the results of the strong scaling tests for 125-

m to 50-m resolutions based on three different mesh sizes. Our

software achieves the similar speedup for the scenarios of 125-

m and 80-m resolutions. With the increase of the number of

CGs, performance degradation is expected, due to two pos-

sible reasons. The ratio of computation over communication

decreases, and so does the ratio of the outer halo region over

the sub-domain size in proportion. Our software is thereby less

effective in overlapping computations and communication.

Number of processes (thousand)
6.4 8 10 16 22.5 30 40 80 100 125 160

Sp
ee

du
p

 3

 4

 6

 8

12

25

x=125m
x=80m
x=50m

Ideal

Fig. 11: The strong scaling results scaling from 6,400 to

160,000 MPI processes for three different problem sizes. Each

CG corresponds to one MPI process.

VII. THE WENCHUAN EARTHQUAKE SIMULATION ON

SUNWAY TAIHULIGHT

Seismic wave propagation for large-scale earthquakes is

affected by the process of source rupture, the velocity medium

structure in the source area, and the free surface boundary.

The source process can be obtained by waveform inversion,

geodetic survey, and GPS data inversion of predecessors.

Limited by the difficulty of seismic inversion, the source model

obtained after source inversion is relatively smooth, with a

lack of high-frequency signals. The medium velocity model

is difficult to observe directly and is often obtained through

model inversion by other work. Therefore, the inversion is

done with more smooth constraints, with not too much of the

high-frequency information. However, the terrain data can be

directly observed.

(b)

102˚ 103˚ 104˚ 105˚

Chengdu

Deyang

Mianyang

MeishanYa’an
Ziyang

Wenchuan

Luding

Maoxian

Jinchuang

Xiaojin

Heishui
Maerkang

(a)

102˚ 103˚ 104˚ 105˚
30˚

31˚

32˚

Chengdu

Deyang

Mianyang

MeishanYa’an
Ziyang

Wenchuan

Luding

Maoxian

Jinchuang

Xiaojin

Heishui
Maerkang

Fig. 12: The up-down velocity field snapshot at 32 sec with

different seismic source: (a) rise time = 4s; (b) rise time = 2s

In this simulation, we selected a 512km × 512km × 80km

and 3D area including the Wenchuan earthquake fault for

calculation. We set the spatial resolution to 64m. Therefore, the

number of grid points is as high as 8000x8000x1250. Such a

large scale is a difficult task to accomplish for ordinary multi-

core computing clusters but can be simulated by the Sunway

TaihuLight within a few hours. We chose the inverted seismic

source [29] with a resolution of 10km x 7.5km (32x8 points in

total). We interpolate the seismic source to 1280x320 points

for simulation. The source time function uses a Gaussian

function to control the primary frequency of the source by the

rise time. A homogeneous structural model is used, excluding

the effects of complex media. In Fig 12, the rise time in (a) is

4s and in (b) is 2s. It can be found that the seismic wavefield is

affected by the reflection and scattering of the topography, and

the coda wave effect is obvious especially for high frequency

(corresponding to small rise time) seismic source. In order

to verify the influence of the topography effect during the

wavefield simulation, we made a comparative verification case,

which is shown in section A.

From this comparison, it can be seen that the topography

contributes greatly to the coda wave effect of seismic waves.

Therefore, for the simulation of seismic waves with complex

topography, large-scale simulation is necessary.

VIII. CONCLUSION

In this work, we proposed a curvilinear grid FDM with

the traction image method to handle the complex geology

features of the Wenchuan earthquake. To develop an efficient

implementation on the Sunway TaihuLight system, we first

redesigned the algorithm to reduce the memory access cost.

A performance model guide and further optimizations and

tunings of the parameters are then derived using a genetic

algorithm. Our efforts improve the simulation performance

for complex scenarios, such as the Wenchuan earthquake,

from 0.05% to 7.6% of the hardware peak. When using the

entire machine with over 10 million cores, SWST provides

a sustained performance of 9.07 Pflops. SWST succeeded in

performing the Wenchuan Earthquake (Ms 8.0, 2008) simula-

tion with complex surface topography in 50-meter resolution

for a region of 640 km by 640 km by 100 km, demonstrating

significantly improved depiction of the coda wave effects, and

a high potential to achieve a more accurate description of the

seismic events.

ACKNOWLEDGMENT

The authors are grateful to the reviewers for valuable

comments that have greatly improved the paper. H. Fu, B.

Chen, and Y. Wei are supported by the National Key Research

& Development Plan of China (grant# 2017YFA0604500),

the National Natural Science Foundation of China (grant

no. 91530323, 41661134014, 41504040 and 61361120098);

and the Tsinghua University Initiative Scientific Research

Program (no. 20131089356). L. Gan, Y. Li are supported by

the National Natural Science Foundation of China (grant no.

61702297); and the China Postdoctoral Science Foundation

(grant no. 2016M601031). G. Yang, C. He, W. Wan, and

W. Zhang3 are supported by the National Key Research &

Development Plan of China (grant no 2016YFA0602200).

The corresponding author is Haohuan Fu (email: hao-

huan@tsinghua.edu.cn). Last but not least, a special girl

Bingwei Chen would like to thank sincerely is Dr. Chuling

Fang from Peking Union Medical College for her patience,

understanding and encouragement during our time together.

And darling, will you marry me?

REFERENCES

[1] B. der Hilst, “A geological and geophysical context for the Wenchuan
earthquake of 12 May 2008, Sichuan, People’s Republic of China,” GSA
today, vol. 18, no. 7, p. 5, 2008.

[2] H. Fu, C. He, B. Chen, Z. Yin, Z. Zhang, W. Zhang, T. Zhang, W. Xue,
W. Liu, W. Yin et al., “18.9-Pflops nonlinear earthquake simulation on
Sunway TaihuLight: enabling depiction of 18-Hz and 8-meter scenarios,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2017, p. 2.

[3] Y. Cui, K. B. Olsen, T. H. Jordan, K. Lee, J. Zhou, P. Small, D. Roten,
G. Ely, D. K. Panda, A. Chourasia et al., “Scalable earthquake simu-
lation on petascale supercomputers,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2010 International Conference
for. IEEE, 2010, pp. 1–20.

[4] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda,
“Efficient inter-node MPI communication using GPUDirect RDMA for
InfiniBand clusters with NVIDIA GPUs,” in Parallel Processing (ICPP),
2013 42nd International Conference on. IEEE, 2013, pp. 80–89.

[5] M. Christen, O. Schenk, and Y. Cui, “Patus for convenient high-
performance stencils: evaluation in earthquake simulations,” in Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society Press, 2012,
p. 11.

[6] D. Komatitsch, S. Tsuboi, C. Ji, and J. Tromp, “A 14.6 billion degrees
of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the Earth
Simulator,” in Supercomputing, 2003 ACM/IEEE Conference. IEEE,
2003, pp. 4–4.

[7] R. Jankowski, “Non-linear FEM analysis of earthquake-induced pound-
ing between the main building and the stairway tower of the Olive View
Hospital,” Engineering Structures, vol. 31, no. 8, pp. 1851–1864, 2009.

[8] L. Carrington, D. Komatitsch, M. Laurenzano, M. M. Tikir, D. Michéa,
N. Le Goff, A. Snavely, and J. Tromp, “High-frequency simulations
of global seismic wave propagation using SPECFEM3D GLOBE on
62K processors,” in Proceedings of the 2008 ACM/IEEE conference on
Supercomputing. IEEE Press, 2008, p. 60.

[9] L. Bie, T. Garth, A. Rietbrock, J. Collier, S. Goes, C. Rychert, T. Hen-
stock, N. Harmon, and A. Anglade, “Towards full waveform simulation
using SPECFEM3D for earthquakes in the Lesser Antilles subduction
zone,” in AGU Fall Meeting Abstracts, 2016.

[10] F. Rodrı́guez Cardozo, V. Hjörleifsdóttir, and M. Caló, “Homogenization
and implementation of a 3D regional velocity model in Mexico for
its application in moment tensor inversion of intermediate-magnitude
earthquakes,” in EGU General Assembly Conference Abstracts, vol. 19,
2017, p. 10428.

[11] M. Rietmann, P. Messmer, T. Nissen-Meyer, D. Peter, P. Basini, D. Ko-
matitsch, O. Schenk, J. Tromp, L. Boschi, and D. Giardini, “Forward and
adjoint simulations of seismic wave propagation on emerging large-scale
GPU architectures,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis. IEEE
Computer Society Press, 2012, p. 38.

[12] A. Heinecke, A. Breuer, S. Rettenberger, M. Bader, A.-A. Gabriel,
C. Pelties, A. Bode, W. Barth, X.-K. Liao, K. Vaidyanathan et al.,
“Petascale high order dynamic rupture earthquake simulations on hetero-
geneous supercomputers,” in High Performance Computing, Networking,
Storage and Analysis, SC14: International Conference for. IEEE, 2014,
pp. 3–14.

[13] V. Ginting, G. Lin, and J. Liu, “On application of the weak Galerkin
finite element method to a two-phase model for subsurface flow,”
Journal of Scientific Computing, vol. 66, no. 1, pp. 225–239, 2016.

[14] A. Breuer, A. Heinecke, and Y. Cui, “EDGE: Extreme Scale Fused
Seismic Simulations with the Discontinuous Galerkin Method,” in
International Supercomputing Conference. Springer, 2017, pp. 41–60.

[15] C. Uphoff, S. Rettenberger, M. Bader, E. H. Madden, T. Ulrich, S. Woll-
herr, and A.-A. Gabriel, “Extreme scale multi-physics simulations of
the tsunamigenic 2004 sumatra megathrust earthquake,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2017, p. 21.

[16] Y. Cui, E. Poyraz, K. B. Olsen, J. Zhou, K. Withers, S. Callaghan,
J. Larkin, C. Guest, D. Choi, A. Chourasia et al., “Physics-based
seismic hazard analysis on petascale heterogeneous supercomputers,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, p. 70.

[17] X. Xu, X. Wen, G. Yu, G. Chen, Y. Klinger, J. Hubbard, and J. Shaw,
“Coseismic reverse-and oblique-slip surface faulting generated by the
2008 Mw 7.9 Wenchuan earthquake, China,” Geology, vol. 37, no. 6,
pp. 515–518, 2009.

[18] T. Parsons, C. Ji, and E. Kirby, “Stress changes from the 2008 Wenchuan

earthquake and increased hazard in the Sichuan basin,” Nature, vol. 454,
no. 7203, p. 509, 2008.

[19] T. Ichimura, K. Fujita, P. E. B. Quinay, L. Maddegedara, M. Hori,
S. Tanaka, Y. Shizawa, H. Kobayashi, and K. Minami, “Implicit non-
linear wave simulation with 1.08 T DOF and 0.270 T unstructured
finite elements to enhance comprehensive earthquake simulation,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2015, p. 4.

[20] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue,
F. Liu, F. Qiao et al., “The Sunway TaihuLight supercomputer: system
and applications,” Science China Information Sciences, vol. 59, no. 7,
p. 072001, 2016.

[21] J. Fang, H. Fu, W. Zhao, B. Chen, W. Zheng, and G. Yang, “swdnn: A
library for accelerating deep learning applications on sunway taihulight,”
in Parallel and Distributed Processing Symposium (IPDPS), 2017 IEEE
International. IEEE, 2017, pp. 615–624.

[22] Z. Zhang, W. Zhang, and X. Chen, “Three-dimensional curved grid
finite-difference modelling for non-planar rupture dynamics,” Geophys-
ical Journal International, vol. 199, no. 2, pp. 860–879, 2014.

[23] W. Zhang and X. Chen, “Traction image method for irregular free
surface boundaries in finite difference seismic wave simulation,” Geo-
physical Journal International, vol. 167, no. 1, pp. 337–353, 2006.

[24] W. Zhang, Z. Zhang, and X. Chen, “Three-dimensional elastic wave nu-
merical modelling in the presence of surface topography by a collocated-
grid finite-difference method on curvilinear grids,” Geophysical Journal
International, vol. 190, no. 1, pp. 358–378, 2012.

[25] K. Deb, “An introduction to genetic algorithms,” Sadhana, vol. 24, no.
4-5, pp. 293–315, 1999.

[26] C. R. Houck, J. Joines, and M. G. Kay, “A genetic algorithm for function
optimization: a Matlab implementation,” Ncsu-ie tr, vol. 95, no. 09, pp.
1–10, 1995.

[27] L. Fan and E. M. Joo, “Design for auto-tuning PID controller based on
genetic algorithms,” in Industrial Electronics and Applications, 2009.
ICIEA 2009. 4th IEEE Conference on. IEEE, 2009, pp. 1924–1928.

[28] A. H. Wright, “Genetic algorithms for real parameter optimization,” in
Foundations of genetic algorithms. Elsevier, 1991, vol. 1, pp. 205–218.

[29] Y. Yagi, N. Nishimura, and A. Kasahara, “Source process of the 12 May
2008 Wenchuan, China, earthquake determined by waveform inversion
of teleseismic body waves with a data covariance matrix,” Earth Planets
& Space, vol. 64, no. 7, pp. e13–e16, 2012.

APPENDIX A

VERIFY THE INFLUENCE OF THE TOPOGRAPHY EFFECT

In order to verify the influence of the topography effect

during the wavefield simulation, we made a comparative

verification case. We eliminated the influence of the media

and the source by setting uniform media and point Ricker

sources (1Hz). Hence we can only focus on the topographic

effect. As shown in Fig 13 (a) and (b), the complex topography

causes more high-frequency scattered waves and has a great

influence on the simulation of the seismic wave field. It can

be concluded that the role of topography in the Wenchuan

earthquake simulation cannot be ignored. The effect of the

terrain on the simulation can be observed through high-

resolution simulations. For large-scale earthquake simulations

103˚E 104˚E 105˚E

31˚N

32˚N

(a)

103˚E 104˚E 105˚E

(b)

Fig. 13: A simple case to verify topography effect during earth-

quake simulations. (a) with topography (b) without topography

(especially for the Wenchuan earthquake, which is a complex

terrain earthquake), the effect of the terrain on the simulation

can be observed through high-resolution simulations.

