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List of Symbols
c  Instantaneous cohesive strength at point ( �� , �� ) in 

Bray and Ucar equation
h  Parameter in Bray, Ucar, and Londe equation
m, s  Dimensionless empirical constant in Hoek–Brown 

criterion
C  Instantaneous cohesive strength in Londe equation
N  Dimensionless normal stress in Londe equation
N1  = �1∕m�c + s

/
m2 , dimensionless major principal 

stress in Londe equation
N3  = �3

/
m�c + s

/
m2 , dimensionless minor principal 

stress in Londe equation
T  Dimensionless shear stress in Londe equation
�  Instantaneous friction angle at point ( �� , �� ) in Bray 

and Ucar equation
�  Instantaneous friction angle at point (N, T) in Londe 

equation
�  Normal stress
�1  Major principal stress
�3  Minor principal stress
�c  Uniaxial compressive strength of intact rock
��  Normal stress in Bray and Ucar equation
�  Shear stress
��  Shear strength corresponding to normal stress �� in 

Bray and Ucar equation
�′
�
  = tan � , gradient of the tangent at point ( �� , �� ) in 

Bray and Ucar equation

1 Introduction

The empirical Hoek–Brown criterion, because of its simplic-
ity and ability to describe the nonlinear behaviour of the 
peak strength of intact rock and fractured rock masses, is one 
of the most widely used strength criteria in rock mechan-
ics and rock engineering (Eberhardt 2012; Hoek and Brown 
1980b; Hoek et al. 2000; Wyllie and Mah 2004). The cri-
terion was originally developed using triaxial strength data 
and for applications in underground excavation design, and 
was, therefore, expressed in terms of major and minor prin-
cipal stress (Hoek and Brown 1980a, b), that is

or

Here, �1 and �3 are the major and minor principal stresses 
at peak strength, �c is the uniaxial compressive strength of 
the intact rock, and m and s are dimensionless empirical 
constants. This original form of the criterion is most useful 
in situations where the strength of an element of a rock mass 
is being assessed in terms of principal stresses (Hoek 1983; 
Hoek and Brown 1980b, 1988). However, there is considera-
ble interest in applying the criterion to engineering problems 
such as slope design in heavily jointed rock masses (Hoek 
1983; Hoek and Brown 1988; Wyllie and Mah 2004) and 
shear strength reduction related rock slope stability analyses 
(Dawson et al. 2000; Hammah et al. 2004), and for this, a 
formulation of the criterion in terms of shear and normal 
stresses is more suitable. To this end, several attempts have 
been made to derive a shear–normal stress form of the crite-
rion. Indeed, the literature contains three seemingly different 
formulations of the Hoek–Brown criterion in terms of shear 
and normal stresses: one is the equation derived by Dr John 
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Bray at Imperial College and reported by Hoek (1983), and 
two further equations are those developed by Ucar (1986) 
and Londe (1988) (Brown and Hoek 1988; Hoek 1983; Hoek 
and Brown 1988, 1997; Londe 1988; Ucar 1986; Wyllie and 
Mah 2004). These are referred to as the Bray, Ucar, and 
Londe equations hereafter.

Surprisingly, a review of the literature reveals that, despite 
these relations being presented many years ago and remaining 
in common use, no analytical derivation or explicit comparison 
has been published regarding the equivalence of these three 
forms of the Hoek–Brown criterion in shear–normal space. In 
fact, the formulations seem only to have been appraised quali-
tatively in terms of ease-of-use. For instance, Hoek and Brown 
(1988) noted that “these three sets of equations are different 
in appearance and they all yield identical results”, but give no 
proof that the three forms are equivalent. Furthermore, and in 
case of the Bray equation, which has been considered as the 
“most convenient for incorporation into computer programs” 
by Hoek and Brown (1988) and frequently referred to as such 
by others afterwards (Hoek et al. 2000; Wyllie and Mah 2004), 
its derivation is missing from the literature.

Although it has been almost 40  years since the 
Hoek–Brown criterion was first proposed and a new ver-
sion—the generalised Hoek–Brown criterion (Hoek 
1994)—has been introduced later and widely used, the 
original Hoek–Brown criterion is still important to the rock 
mechanics community, as is mentioned in Hoek (1994) 
that “the original criterion has been found to work well 
for most rocks of good to reasonable quality”. In addition, 
the original Hoek–Brown criterion is helpful for estimat-
ing the strength of intact rock (when s = 1). Particularly, for 
numerical tools such as the combined finite-discrete element 
method (FEMDEM) (Munjiza 2004), since its capability to 
explicitly explore rock mass behaviour from microscopic 
viewpoints, the strengths of intact rock, rather than those of 
the rock masses, are usually used as input parameters. Thus, 
compared with the more complex generalised Hoek–Brown 
criterion, the analytical shear–normal stress form of the orig-
inal Hoek–Brown criterion provides an easy-to-implement 
approach to support these numerical simulations. Moreo-
ver, the three shear–normal stress forms of the original 
Hoek–Brown criterion continue to appear in the literature 
(e.g. Bertuzzi et al. 2016; Lee and Bobet 2014; Lee and Pie-
truszczak 2017; Saroglou and Tsiambaos 2008; Senent et al. 
2013; Shen et al. 2012), despite no comment being provided 
regarding their relationship. Therefore, it appears that the 
relation between the three shear stress-normal stress forms 
and the original principal stress form of the Hoek–Brown 
criterion remains an important open question.

With the goal of bringing clarity to this subject, this 
paper analytically demonstrates the equivalence of the three 
shear–normal stress forms of the original Hoek–Brown crite-
rion. This formal demonstration of equivalence confirms that 

the three equations do generate identical results, and means 
that selection of the form of the shear–normal stress equation 
of the Hoek–Brown criterion may indeed be based solely on 
ease-of-use in any particular application. Below, we first pre-
sent these three equations, show how the Bray equation may 
be obtained, and then demonstrate their equivalence.

2  Three Shear–Normal Stress Forms 
of the Hoek–Brown Criterion—the Bray, 
Ucar, and Londe Equations

2.1  The Bray Equation

When the Hoek–Brown criterion was first proposed in 1980, 
only an empirical shear strength equation was given in Hoek 
and Brown (1980a). To assist analyses in those cases where 
shear failure is dominant, in a later paper—Hoek (1983)—a 
shear–normal stress form of the criterion was presented, and 
the derivation accredited to Dr. John Bray at Imperial Col-
lege. Although the Bray equation is commonly cited in the 
rock mechanics literature (e.g., Brown and Hoek 1988; Hoek 
and Brown 1988, 1997; Wyllie and Mah 2004), its deriva-
tion seems never to have been presented. We firstly present 
this equation below, and then give a detailed derivation of it.

The Bray shear–normal stress form of the Hoek–Brown 
criterion is given by

where �� denotes the shear strength corresponding to normal 
stress �� , and � is the instantaneous friction angle at a given 
value of �� and �� (point B in Fig. 1). The instantaneous fric-
tion angle � can be calculated from

where

In use, the dimensionless parameter h is calculated from 
the normal stress �� , and from this, the instantaneous fric-
tion angle � determined. The corresponding shear strength 
�� is then obtained using Eq. (3). The instantaneous cohesive 
strength c associated with the point ( �� , �� ) is given simply by

The Bray equation may be derived using the method 
introduced by Balmer (1952). To begin, using the triangle 
BCO of Mohr’s circle in Fig. 1, we establish that

(3)�� = (cot � − cos �)
m�c

8
,

(4)� = arctan

[
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Taking the partial derivative of �1 with respect to �3 and 
solving the resulting equation for �� yields

A detailed derivation of Eq. (8) appears in Eqs. (9) to 
(14) of Ucar (1986). Substituting Eq. (8) into Eq. (7) and 
solving for �� gives

Note that Eqs. (8) and (9) can alternatively be obtained using 
the method introduced by Carranza-Torres (2004).

Continuing with triangle BCO in Fig. 1, and using Eqs. (8) 
and (9), the following trigonometric functions of the friction 
angle � can be derived:

(8)�� =
�1 − �3
��1

��3
+ 1

+ �3.

(9)�� =
�1 − �3
��1

��3
+ 1

√
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��3
.

(10)sin � =
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)/
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2
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− 1
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+ 1
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(11)cos � =
BC

BO

=
��(

�1 − �3
)/

2
=

2

√
��1

��3

��1

��3
+ 1

,

Rearranging the Hoek–Brown criterion (Eq. 2) to obtain (
�1 − �3

)
 and this substituting into Eq. (9), we obtain

Multiplying the numerator and denominator of Eq. (13) by 
( ��1

/
��3 − 1 ) gives

Taking the partial derivative of the Hoek–Brown criterion 
in Eq. (2) with respect to �3 and solving for ( ��1

/
��3 − 1 ) 

gives

and substituting Eq. (15) for ( ��1
/
��3 − 1 ) in the numera-

tor of Eq. (14), rearranging and making use of the relations 
given in Eqs. (11) and (12) leads to
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Fig. 1  Graphical representation of the terms in the Bray and Ucar equations (after Ucar 1986)
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Equation (16) is the Bray equation.

2.2  The Ucar Equation

With the purpose of developing new methods of slope stabil-
ity analysis, Ucar (1986) presented another solution for the 
shear strength envelope corresponding to the principal stress 
form of the Hoek–Brown criterion. The Ucar equation is

where �′
�
 is the gradient of the tangent at point B(�� , �� ) on 

the shear strength envelope (Fig. 1), and is thus equal to 
tan � of the Bray equation. Note that to allow convenient 
comparison with the other shear–normal stress equations, 
Eq. (17) presented here is a re-arrangement of Eq. (42) in 
Ucar (1986), and the original Ucar equation is

A detailed derivation of the Ucar equation is presented in 
Ucar (1986). In addition, in a subsequent discussion paper, 
Brown and Hoek (1988) compared Ucar’s equation to the 
Bray equation on the basis of ease-of-use for calculating the 
shear strength, but gave neither a comparison of equivalency 
nor a discussion of how the two formulations may relate to 
each other.

2.3  The Londe Equation

In another discussion paper to Ucar (1986), Londe (1988) 
derived a dimensionless shear–normal stress form of the 
Hoek–Brown criterion by first dividing both sides of the 
Hoek–Brown equation by m�c to give
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8
= ���

�
�

[
���

√
1 + ���

2 +
(
1 + ���

2
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.

and then writing this equation in the more compact form

where

and

where N1 and N3 are the dimensionless principal stresses, 
and the Mohr’s circle constructed on N1 and N3 , together 
with the associated shear strength envelope, is shown in 
Fig. 2. In this figure,

and the point P has coordinates

and

The Londe equation is

where � the slope angle of the line tangent to the 
Hoek–Brown envelope at point P(N, T) (Fig. 2) is given by
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Fig. 2  Graphical representation of the terms in the Londe equation 
(after Londe 1988)



3505The Equivalence of Three Shear–Normal Stress Forms of the Hoek–Brown Criterion  

1 3

with h being given by

For any particular normal stress � , the dimensionless param-
eter N is calculated from Eq. (24), h and � obtained from 
Eqs. (28) and (27), respectively, and the dimensionless shear 
strength T obtained from Eq. (26). Finally, the shear strength 
is given by � = T ⋅ m�c (based on Eq. (25)).

Table 1 summarises the three formulations, and a detailed 
comparison of these three shear–normal stress forms of 
Hoek–Brown criterion is presented in the next section.

3  Comparison of the Bray, Ucar, and Londe 
Equations

3.1  Comparison Between the Bray and Ucar 
Equations

In the Ucar equation of Eq. (17), �′
�
 is the slope of the tan-

gent at the point B(�� , �� ) on the shear envelope in Fig. 1, 
i.e., ��

�
= tan � . Substituting ��

�
= tan � into the Ucar equa-

tion, we obtain

Then, replacing tan � in Eq. (29) by sin �∕cos � , the Ucar 
equation evolves as follows:

This shows the Ucar equation to be equivalent to the Bray 
equation, and the latter can be considered as a simplified 
version of the former. This also supports the statement by 

(28)h = 1 +
16

3
N.

(29)�� =
m�c

8

1

tan �

�
tan �

√
1 + tan2� + 1 + tan2�

� .

(30)

�� =
m�c

8

1

sin �

cos �

(
sin �

cos �

√
1 +

sin
2�

cos2�
+ 1 +

sin
2�

cos2�

)

=
m�c

8

cos3�

sin �(sin � + 1)

=
m�c

8
(cot � − cos �).

Hoek and Brown (1988) reported in Sect. 1, that the Bray 
equation is the “most convenient”.

3.2  Comparison Between the Bray and Londe 
Equations

To compare the Bray and Londe equations, we first inves-
tigate the relation between the angle � of Londe equation 
(see Fig. 2) and the angle � in both the Bray and Ucar equa-
tions (see Fig. 1). Based on the derivation of Bray equation 
presented in Sect. 2.1, parameters N and T in Fig. 2 can be 
expressed as

and

The tangent of the shear strength envelope (Fig. 2) at point 
P(N,T) is expressed as

where C is the intercept of the tangent on the T-axis. Substi-
tuting Eqs. (31) and (32) into Eq. (33) and rearranging for 
N1 , we obtain

Taking the partial derivative of Eq. (34) with respect to N3 , 
we obtain

from which we find

Taking the partial derivative of Eq. (20) with respect to N3 , 
we obtain

Substituting Eq. (37) into Eq. (36) and rearranging gives

and substituting Eq. (22) into Eq. (38) gives

(31)N =
N1 + N3

2
−

N1 − N3

2
sin�,

(32)T =
N1 − N3

2
cos�.

(33)T = C + N tan�,

(34)N1 = 2C
cos�

1 − sin�
+ N3

1 + sin�

1 − sin�
.

(35)
�N1

�N3

=
1 + sin�

1 − sin�
,

(36)sin� =

�N1

�N3

− 1

�N1

�N3

+ 1
.

(37)
�N1

�N3

= 1 +
1

2
√
N3

.

(38)sin� =
1

1 + 4
√
N3

,

Table 1  Three shear–normal stress forms of the Hoek–Brown crite-
rion

The Bray equation �� =
m�c

8
(cot � − cos �)

The Ucar equation �� =
m�c

8

1

���

�
���

√
1+���

2+(1+��� 2)
�

The Londe equation T =
1

8
(cot� − cos�)
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Now, rearranging Eq. (15) and substituting into Eq. (10) 
leads to

Thus, as the right-hand sides of Eqs. (39) and (40) are iden-
tical, we see that the angle � (Fig. 2) in Londe equation is 
equal to the angle � (Fig. 1) in the Bray and Ucar equations, 
thereby demonstrating that the tangent to the criterion has 
the same gradient in their respective coordinate spaces. That 
� = � allows the Londe equation (Eq. (26)) to be written as

and given that � = T ⋅ m�c (from Eq. (25)), we finally reach 
the Bray equation based on the Londe equation, that is

This demonstrates the equivalence between the Bray and 
Londe equation, and that the latter can be considered as a 
dimensionless version of the former.

4  Conclusion

In the present paper, we have reviewed three shear–normal 
stress forms of the Hoek–Brown criterion—the Bray, Ucar, 
and Londe equations—that can be found in the rock mechan-
ics literature, and noted that derivations of both the Bray 
equation and the equivalence of these equations are missing 
from the literature. Accordingly, we have given a derivation 
of the Bray equation, and then, through a series of deriva-
tions and comparisons, demonstrated how the Bray, Ucar, 
and Londe equations are equivalent but presented in differ-
ent formats: the Bray equation is a simplified version of the 
Ucar equation, and the Londe equation can be considered 
as a dimensionless version of the other two. This formal 
equivalence confirms that the selection of the form of the 
shear–normal stress equation of Hoek–Brown may be based 
on ease-of-use in any particular application.
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