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a b s t r a c t

Stress is central to many aspects of rock mechanics, and in the analysis of in situ stress measurement data
the calculation of the mean value and an assessment of dispersion are important for statistical char-
acterisation. Currently, stress magnitude and orientation are processed separately in such analyses. This
effectively decomposes the second-order stress tensor into scalar (principal stress magnitudes) and
vector (principal stress orientations) components, and calculation of mean and dispersion of stress data
on the basis of these decomposed components, which violates the tensorial nature of stress, may either
yield biased results or be difficult to conduct. Here, by introducing tensorial techniques, we examine two
calculation approaches for the mean and dispersion for stress tensors – based on Euclidean and Rie-
mannian geometries – and discuss their similarities, differences and potential applicability in en-
gineering practice. We compare the two approaches using stress tensor superposition and interpolation,
and the analysis of actual in situ stress data. The results indicate that Euclidean and Riemannian mean
tensors are in general not equal, with the disparity increasing as stress tensor dispersion increases. Both
Euclidean and Riemannian approaches are shown to be capable of characterising stress dispersion, al-
though Euclidean dispersion is scale dependent and has units of stress whereas Riemannian dispersion is
a scale independent unitless number. Finally, a paradox is revealed in that despite stress tensors being
Riemannian entities, it is Euclidean mean stress that is the more meaningful for engineering applications.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Stress is central to many aspects of rock mechanics, and in the
analysis of in situ stress measurement data the calculation of the
mean value and an assessment of dispersion are important for
statistical characterisation.8,12,13,32–36 Currently, stress magnitude
and orientation are customarily processed separately in such
analyses (Fig. 1).1–8,32–34,36 This effectively decomposes the sec-
ond-order stress tensor into scalar (principal stress magnitudes)
and vector (principal stress orientations) components, and calcu-
lation of mean and dispersion of stress data on the basis of these
decomposed components, which violates the tensorial nature of
stress, may either yield biased results or be difficult to
conduct9,10,13,37 (p54). As noted elsewhere,11 ‘Since stress is a tensor
with six independent components, calculating the mean, standard
deviation and confidence intervals of the measured stresses cannot be
carried out using the same statistical techniques developed for scalar
quantities’. As an alternative to the separate analysis of principal
stress magnitude and orientation, several researchers in the field
of rock mechanics have calculated the mean stress tensor based on
tensors referred to a common Cartesian coordinate system.11–14,35

Although these contributions essentially introduced a tensorial
approach, they did so in an empirical setting. A result of this is
that, to date, there seems to have been no mathematically rigorous
proposal from the rock mechanics community for calculating such
summary statistics for groups of stress tensors as the mean and
dispersion. In particular, the calculation of the dispersion of a
group of stress tensors obtained from a stress measurement
campaign seems not to have been conducted in the rock me-
chanics field. Here, continuing the analysis of stress tensors re-
ferred to a common Cartesian coordinate system, and considering
tensors as single entities, we introduce approaches based on Eu-
clidean and Riemannian geometry to calculate their mean and
dispersion.

As an early tensorial application example in rock mechanics,
Hyett et al.12 demonstrated that the mean of n stress tensors
should be found by firstly transforming the individual tensors to a
common Cartesian coordinate system (say, x–y–z), and then cal-
culating the mean of each tensor component:
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Fig. 1. Example separate analyses of stress magnitude and orientation.1 (a) Least
squares regression of stress magnitude. (b) Directional statistics applied to principal
stress orientation.
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Fig. 2. Diffusion tensor at each voxel in Diffusion Tensor Imaging.17
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Here S denotes the mean stress tensor, Si represents a particular
stress tensor, σ and τ are the normal and shear tensor components,
respectively, and σ and τ denote the corresponding mean tensor
components. This approach was subsequently followed by
others.11,13,14,35

Based on Eq. (1), several researchers11,13,35,39 suggested how
the variance of stress tensors might be calculated. After obtaining
the mean stress tensor, a new coordinate system is established
that coincides with the principal directions of the mean tensor
(say, X–Y–Z), and all the original stress tensors transformed into
this new coordinate system. Using the fundamental definition of
variance, i.e. ∑ ( − ) ( − )= x x n/ 1i

n
i1

2 , and recognising that
τ τ τ= = = 0XY YZ ZX , the variance tensor is then calculated as
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However, this only gives the dispersion of each tensor component,
rather than a scalar value indicating the overall variability of the
group of tensors. In other words, comparison of the dispersions of
different groups of tensors is still difficult to conduct with this
approach.

As we show below, these rock mechanics tensorial applications
are essentially a Euclidean approach. However, it is now known that
symmetric positive definite (SPD) matrices such as stress tensors
with positive principal stresses do not live in Euclidean space, but in
curved spaces known as Riemannian manifolds (see for example,
Chapter 6 of Ref. 15 and Chapter 19 of Ref. 16). Statistical analysis of
SPD matrices on Riemannian manifolds has been recently devel-
oped for use in Magnetic Resonance Imaging (MRI) applications in
medicine (Fig. 2). MRI can be used to detect diffusion of water
molecules through biological tissues, and analysis of this can reveal
microscopic details about tissue architecture (either normal or in a
diseased state). As diffusion can be characterised by an SPD matrix
called the “diffusion tensor”, it has been necessary to develop ten-
sorial approaches to aid diagnosis.17–19

In this paper, and following on from earlier work of ours,20 we
focus on the illustration and comparison of Euclidean and Riemannian
approaches to calculating the mean and dispersion of stress tensors,
and their potential applicability in engineering practice. The under-
lying stochastic model is one that simultaneously includes all stress
tensor components (when referred to a common Cartesian coordinate
system), rather than one that processes principal stress magnitudes
and orientations separately. Since these calculations are based on
distance measures, we first give a simple comparison of Euclidean and
Riemannian distances, and indicate their significance in the calculation
of mean tensors. Following this we introduce both Euclidean and
Riemannian mean and dispersion functions, and present tensor su-
perposition techniques in both Euclidean and Riemannian spaces. We
move on to compare Euclidean and Riemannian approaches through
stress tensor superposition and interpolation, and the analysis of ac-
tual and perturbed in situ stress data. We conclude by examining the
differences between the two approaches and their respective
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applicability in engineering practice, and highlight aspects of these
analyses that may warrant further attention by the rock mechanics
community.
2. Euclidean and Riemannian distance measures

Two commonly used geometries are Euclidean and Riemannian. A
characteristic of Euclidean geometry is that the distance between two
points is the length of the straight line connecting them, whereas in
Riemannian geometry the distance between two points is the length,
on the surface of the Riemannian manifold, of the minimum-length
curve joining them. Such curves are known as geodesics. These con-
cepts are illustrated in Fig. 3. The Euclidean distance between points A
and B is the length of the line section connecting them, with the ar-
ithmetic mean of A and B being their midpoint. However, as A and B lie
on a circle (a Riemannian manifold), we see that their mean should lie
at the midpoint of geodesic AB, and the distance between them must
be calculated along the circle, i.e. in a Riemannian sense. A concrete
example is given by locations on the Earth's surface. If we consider the
Canadian cities Toronto and Vancouver, with WGS coordinates (43.7°,
�79.4°) and (49.25°, �123.1°) respectively, and assuming a spherical
Earth of radius 6371 km, the Riemannian distance between them is
about 3354 km and the Euclidean distance about 3316 km. Although
these differ by only about 1%, the Euclidean midpoint is almost
Riemannian
Manifold

exponential mapping
to Riemannian
manifold

geodesic PQ 

P

Q

P’

Fig. 4. Mapping between a Riemannian ma
220 km below the Earth's surface. This simple example demonstrates
that a fundamental difference between these two geometries is the
applicable distance measures. Mathematically, Riemannian geometry
is more general, with Euclidean geometry being the special case of
zero curvature. 21

The mean and dispersion, being moments,38 can be calculated
on the basis of distance measures. Taking the mean as an example,
and using the Fréchet mean function19 as the fundamental defi-
nition of this, we have
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showing that the mean is the point y that minimises the ex-
pectation of the square distance between y and each xi, where

( )d y x, i is the distance between y and xi. As is shown below, it is
this dependence on a distance measure that leads to different
Euclidean and Riemannian statistics.
3. Mean of stress tensors

3.1. Euclidean mean stress tensor

To derive a Euclidean mean stress tensor, we start with the
derivation of a scalar mean. Since the Euclidean distance between
two scalars is their difference, Eq. (3) becomes
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where Si are the known stress tensors and Y is the mean tensor.
The Euclidean distance between tensors S1 and S2 is22
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where ‖⋅‖F denotes the Frobenius norm (also called Euclidean
norm or Hilbert-Schmidt norm) 23. For a 3�3 tensor S the Fro-
benius norm is given by 23
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where T and tr(⋅) denote matrix transpose and trace, respectively.
To be meaningful, the Euclidean distance needs to be trans-

formationally invariant (i.e. independent of the coordinate sys-
tem). To confirm that it is, we use Eq. (9) to consider the case when
the stress tensors are subject to some transformation represented
by the matrix R, i.e. ′ = ⋅ ⋅S R S RT . Thus
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For the mean, using Eq. (8), Eq. (7) becomes
Fig. 5. Euclidean and Riemannian interpolations an
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from which, in the same manner as Eq. (6), the Euclidean mean
stress tensor is obtained as
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This is transformationally consistent, in that the mean of trans-
formed tensors is equal to the transformed mean:
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These results show that it is the Euclidean mean stress tensor that
has been calculated previously by those authors who proposed
using a common Cartesian coordinate system.11–14,35

By applying a scale factor k (k40) to the individual stress
tensors Si, we see that the Euclidean mean is scale dependent:
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3.2. Riemannian mean stress tensor

The Riemannian mean of SPD matrices has been studied by
researchers in several areas,15-19,24-26 since it is known that SPD
matrices live in curved Riemannian spaces.15,16 As the Fréchet
mean function, Eq. (3), shows, calculation of the Riemannian mean
requires a Riemannian distance. The fundamental approach to
obtaining Riemannian distances is first mapping SPD matrices
from the Riemannian manifold on to a Euclidean tangent space at
d the distances between interpolated tensors.
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Table 1
Stress tensor components (data from Ref. 3).

Depth (m) Stress tensor components (MPa)

sx τxy τxz sy τyz sz

416.55 43.25 4.67 �3.44 32.67 �0.34 15.35
416.57 41.20 6.59 �3.32 31.30 0.46 17.69
416.60 42.92 8.80 �3.97 35.83 2.83 14.57
416.62 45.11 5.42 �4.44 31.59 2.29 18.34
416.68 42.57 4.36 �1.93 28.27 0.85 15.13
416.69 53.78 5.26 �2.26 31.51 3.62 17.61
416.70 26.05 �7.48 �2.57 38.40 1.74 12.35
416.71 28.85 �12.01 �5.65 45.40 6.71 16.29
416.73 30.96 �9.73 �3.86 42.67 0.45 14.56
416.77 23.88 �9.88 �3.70 51.36 1.09 15.19
416.79 34.97 �14.97 �4.51 57.51 1.80 11.74
416.81 27.89 �10.89 �1.60 44.53 �0.24 14.22
417.17 33.78 6.06 �2.19 46.27 0.19 14.59
417.17 33.09 6.35 �5.77 45.00 0.10 18.15
417.17 26.07 4.60 �3.30 42.37 3.14 12.69
417.17 28.18 4.70 �3.89 40.82 3.72 18.25
417.17 29.73 3.00 �4.92 40.55 �0.08 14.22
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a specific point on the Riemannian manifold (Fig. 4), and following
this by distance calculation using Euclidean concepts.17,21 Here we
briefly introduce two widely used Riemannian distance functions.

Pennec et al.26 used the affine-invariant distance function
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to calculate the distance between two SPD matrices, where log(⋅)
represents the matrix version of the logarithm, and ⋅ =S S S1 1 1.
No analytical solution exists for the Riemannian mean using Eqs.
(7) and (15), and so a numerical technique, using a gradient des-
cent algorithm, has been proposed:26
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Here, exp(⋅) denotes the matrix version of the exponential func-
tion. Upon convergence, Y is the Riemannian mean.

As Eqs. (15) and (16) show, the matrix logarithm and matrix
exponential are central to Riemannian computation. These func-
tions are defined27–29 as

Λ Λ( ) = ⋅ ( )⋅ ( ) = ⋅ ( )⋅ ( )S V V S V Vlog ln and exp exp , 17T T

where Λ and V are the diagonal matrix of the eigenvalues and the
orthogonal matrix of the corresponding eigenvectors, respectively,
with the functions (⋅)ln and (⋅)exp operating on each diagonal
element of Λ. Mathematical software packages such as MATLAB
and Octave30 provide the functions logm and expm for matrix
logarithm and matrix exponential, respectively.

Using Eq. (16) to calculate the mean is usually computationally
expensive, and to overcome this the linearized Log-Euclidean
distance has been proposed.17,31 This can be written as

( )( ) ( )= − = ‖ − ‖ ( )d S S S S S S, tr log log log log 18F
2

1 2 1 2
2

1 2
2

The Log-Euclidean distance requires significantly less computation
than does the affine-invariant distance of Eq. (15), and providing
the linearization introduces sufficiently small errors the two yield
similar (and potentially, identical) results.17 For simplicity, only the
Log-Euclidean distance is used in the remainder of this work. As
with the Euclidean distance, the Log-Euclidean distance is trans-
formationally invariant:
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Employing Eq. (7), the Riemannian mean is thus17,31
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This approach first converts tensors into their Euclidean tangent
space using the matrix logarithm, then calculates the mean of the
transformed tensors in a Euclidean sense and finally obtains the
Riemannian mean by transforming the Euclidean mean back to the
Riemannian space using matrix exponential.

As with the Euclidean mean, the Riemannian mean is both
transformationally consistent and scale dependent:



Table 2
Euclidean and Riemannian means of stress data.

sx τxy τxz sy τyz sz

Euclidean mean (MPa) 34.84 �0.30 �3.61 40.36 1.67 15.35
Riemannian mean (MPa) 33.01 �0.37 �3.65 38.74 1.64 15.14

Table 3
Euclidean and Riemannian dispersion of stress data.

Original data Scaled data (k¼2)

Euclidean dispersion (MPa) 16.84 33.68
Riemannian dispersion 0.48 0.48

Table 4
Normal and shear stress component perturbation ranges applied to the Riemannian
mean of Table 1.

Perturbation ranges Normal stress Shear stress

Data set 1 [�2,2] [�1,1]
Data set 2 [�4,4] [�2,2]

Table 5
Perturbed stress Data Set 1.

Stress tensor components (MPa)

sx τxy τxz sy τyz sz

31.93 0.07 �4.28 37.10 2.50 14.96
34.28 0.21 �2.83 40.05 0.74 14.16
33.44 �0.27 �2.98 38.42 2.15 16.94
34.95 0.27 �2.73 38.97 1.68 15.03
34.85 �0.91 �3.92 36.91 2.44 13.45
34.86 0.08 �3.45 38.27 1.00 13.55
33.82 �0.44 �3.50 38.73 0.82 15.50
34.44 �0.93 �3.92 37.24 2.60 13.77
32.90 0.13 �3.63 39.43 1.24 15.01
35.00 �0.54 �2.93 39.66 1.08 16.40
34.75 0.34 �4.33 37.77 1.33 16.04
34.90 �0.60 �2.84 37.57 2.54 16.27
32.02 �0.09 �2.72 37.94 2.02 13.19
31.07 �0.05 �4.53 40.58 2.54 15.94
34.16 0.57 �4.00 38.48 1.36 15.71
31.35 0.19 �3.40 37.16 0.68 16.97
33.05 �0.51 �3.87 37.50 2.61 16.91
34.82 �1.02 �3.14 39.97 1.36 15.48
31.44 0.36 �4.35 40.63 1.17 13.72
34.77 �0.96 �3.67 37.06 1.18 15.32

Euclidean mean 33.64 �0.20 �3.55 38.47 1.65 15.22
Riemannian mean 33.60 �0.20 �3.56 38.44 1.66 15.15

Table 6
Perturbed stress Data Set 2.

Stress tensor components (MPa)

sx τxy τxz sy τyz sz

30.33 1.30 �4.35 38.02 0.89 13.21
34.79 0.54 �2.46 35.26 1.90 16.80
32.77 �1.35 �3.50 38.31 2.16 14.59
32.94 �1.58 �5.01 35.52 0.86 13.57
33.33 �1.12 �5.14 42.01 1.06 15.26
31.59 1.58 �1.95 40.28 3.49 11.64
32.32 1.44 �4.53 38.39 3.27 14.57
33.11 �0.74 �4.13 38.35 0.03 18.55
36.88 �1.24 �5.33 35.15 2.51 14.89
32.54 �2.32 �3.21 41.26 3.43 17.56
36.50 1.62 �3.46 41.50 0.80 13.78
29.69 �0.77 �3.71 35.29 3.53 12.50
30.65 �0.20 �1.78 41.84 2.65 13.56
30.78 �1.17 �4.00 37.08 0.59 12.69
36.48 0.00 �3.48 41.32 1.44 18.15
32.19 �0.92 �5.38 36.11 1.43 13.29
32.71 �1.88 �2.45 41.55 2.77 18.15
30.32 �0.45 �2.83 41.83 �0.01 18.68
29.52 �2.29 �3.48 37.75 0.87 17.87
34.17 �0.09 �4.70 35.84 2.57 12.27

Euclidean mean 32.68 �0.48 �3.74 38.63 1.81 15.08
Riemannian mean 32.56 �0.50 �3.77 38.50 1.84 14.85

Table 7
Euclidean and Riemannian dispersions of perturbed data sets.

Data Set 1 Data Set 2

Euclidean dispersion (MPa) 2.67 5.04
Riemannian dispersion 0.12 0.22

Table 8
Difference between two means for each perturbed data set.

Distance between two means Data Set 1 Data Set 2

Euclidean distance 0.088 0.298
Riemannian distance 0.005 0.018
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where I is the identity matrix with the same dimensions as the
stress tensor.
4. Stress tensor dispersion

The variability of scalars may be characterised in terms of
standard deviation. Here, we consider stress tensor dispersion, i.e.
the square root of the second central moment, as an analogous
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measure. The reliance of second moment on distance means that
Euclidean dispersion is
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Because of the transformational consistency of both means and
the transformational invariance of both distance functions, it is
straightforward to show (in the same way as Eqs. (10) and (19))
that these dispersions are transformationally invariant.

Scale dependency of these dispersions may also be examined.
For Euclidean dispersion we have
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while for the Riemannian dispersion, we obtain
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These results show that data scaling propagates into Euclidean
dispersion, but not into Riemannian dispersion. This implies Rie-
mannian dispersion is a scale independent intrinsic measure of
data variability, in a manner similar to the Mahalanobis distance or
correlation coefficient, and suggests it may be valuable for com-
parison of stress variability.
5. Statistics of stress tensor superposition

Superposition of stress tensors is commonplace in mechanics,
being used to investigate sequential application of loads and de-
composition into spherical and deviatoric components, amongst
others. Here we consider the statistics associated with the parti-
cular case of a constant SPD matrix C being added to or subtracted
from each stress tensor.

For the Euclidean approach, the mean of the superposed tensors is
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As expected, addition or subtraction of C propagates through to the
mean, and dispersion is unaffected.

Riemannian tensor superposition is only defined in terms of
mapping into the Euclidean tangent space,21 with the addition or
subtraction of two tensors thus being given by

( )′ = ± ( )S S Sexp log log . 291 2

Hence, the Riemannian mean of the superposed tensors is
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These results show the superposed mean to be the Riemannian
superposition of the original mean and the constant, and the su-
perposed dispersion to be equal to the original dispersion. Taking
into account the nature of Riemannian space, these results are as
expected. In the next section, we use different examples to apply
both the Euclidean and Riemannian approaches and compare their
differences.
6. Euclidean and Riemannian analysis of stress – application,
comparison and discussion

It seems that none of Euclidean dispersion, Riemannian mean
and Riemannian dispersion have been used in rock mechanics
studies of stress, and so here we present some elementary ana-
lyses to examine the similarities and differences between Eu-
clidean and Riemannian statistics, and their potential applicability
in engineering practice. We begin with example calculations of
superposition and interpolation of 2D stress tensors, and follow
this with calculations using 3D stress tensors obtained as part of
an actual stress measurement campaign.

As Eqs. (12) and (20) show, the Euclidean and Riemannian
mean values are the arithmetic and geometric means,15
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respectively. The use of the matrix logarithm in Eq. (20) indicates
why Riemannian mean is only defined for SPD matrices, and al-
though this restriction has the potential to be a serious drawback
to Riemannian analysis, as in situ stress tensors are generally SPD
matrices (i.e. positive principal stress components when using the
geomechanics convention of compression positive) in practice it
may prove to be irrelevant.

6.1. Superposition and interpolation of 2D stress tensors

Both interpolation and superposition are strongly related to
calculation of the mean value. From Eqs. (12) and (20) we see that
the first step in obtaining the Euclidean and Riemannian means is
to perform summation of stress tensors. In the case of two tensors,
this is equivalent to superposition. Similarly, the mean of two
tensors is equivalent to the interpolated mid-point, with other
interpolated values being considered weighted means (Fig. 5).17.

6.1.1. Stress tensor superposition
As the Euclidean mean (Eq. (12)) and Riemannian mean (Eq.

(20)) functions show, stress tensor summation (or superposition)
forms the basis of mean calculation. Here we use a straightforward
case to demonstrate the physical meaning of stress superposition,
and further show the appropriateness of Euclidean and Rie-
mannian mean functions in practice. Fig. 6 shows two 2D stress
states applied to a homogeneous, isotropic and elastic plate, and
the final stress state resulting from their customary superposition:
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Reference to Eq. (32) confirms that such customary superposition
is a Euclidean analysis.

The Riemannian addition of these two stress tensors is given by
Eq. (29), with the result
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0 50
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This is clearly different from the physical reality with which we are
familiar – i.e. Fig. 6 and Eq. (32), indicating that Euclidean super-
position (i.e. addition) may be more meaningful than Riemannian
superposition. This suggests that the Euclidean mean will be more
appropriate than Riemannian mean in engineering applications,
although it is not known whether there may be circumstances in
which the opposite is true.

6.1.2. Interpolation between stress tensors
In general, and as a consideration of geometry suggests (cf.

Fig. 3), Euclidean and Riemannian mean tensors will be different.
We investigate the magnitude of this difference using linear in-
terpolation between two stress tensors, as interpolation produces
a weighted mean.17

Euclidean interpolation is given by

( ) = ( − ) + ( )t t tS S S1 , 341 2

and Riemannian interpolation by

( ) = ( − ) + ( )⎡⎣ ⎤⎦t t tS S Sexp 1 log log , 351 2

where ≤ ≤t0 1, and S1 and S2 are the two tensors being inter-
polated between. The Riemannian interpolation again follows the
Riemannian procedure of first transforming the tensors into Eu-
clidean tangent space, then performing Euclidean interpolation,
and finally transforming the interpolation results back into the
Riemannian space. With =t 0.5 (i.e. the mid-point) it is clear that
Eqs. (34) and (35) are equivalent to Eqs. (12) and (20) respectively.
The interpolation is illustrated in Fig. 5a using 2D tensors, with
each tensor represented by an ellipse whose semi-axes denote the
magnitude and orientation of the principal values. Fig. 5b shows
the Euclidean and Riemannian distance between adjacent inter-
mediate stress tensors for both forms of interpolation.

Interpretation of these results is perplexing. Firstly, the Eu-
clidean mean seems inherently rational, and is what other
authors11–14,35 would calculate, but this may be because of our
familiarity with Euclidean concepts for stress analysis. However, as
stress tensors live in Riemannian space, strictly it is the Rie-
mannian mean that is correct despite it seeming physically in-
comprehensible. We see also that the two mean tensors differ
significantly, but this may be a result of the large Euclidean and
Riemannian distances between S1 and S2 (i.e. 53.39 and 4.52, re-
spectively); Fig. 3 demonstrates this effect, in that the Euclidean
and Riemannian mean would approach each other as the distance
between A and B reduces. In effect, over small distances the Eu-
clidean and Riemannian geometries are practically interchange-
able (as large-scale maps of small areas of the Earth's surface
demonstrate).

Secondly, it is clear that the two interpolation sequences differ
significantly. Although the Euclidean interpolation results appear
reasonable, they nevertheless seem ‘awkward’ in the region

≤ ≤t0 0.2. Certainly, the Riemannian results seem to have an
overall smoother transition. However – and as noted above – the
Riemannian mean value seems somehow ‘incorrect’, which leaves
the meaning of the Riemannian interpolation questionable. It is
currently unknown how these contrasting results should be re-
conciled, but – as we noted above – in this case the distance be-
tween S1 and S2 is large, and again we speculate that the difference
between the two interpolation sequences is a result of this.

6.2. Analysis of in situ stress data

To apply these results to actual stress measurement data, 17
complete stress tensors obtained at a depth of around 417 m have
been extracted from the 99 in situ stress measurements made at
the AECL's Underground Research Laboratory.3 All of these tensors
have positive principal stresses and thus are suitable for both
Euclidean and Riemannian analyses. The data are presented in
Table 1, transformed into the common coordinate system of x East,
y North and z vertically upwards.

The Euclidean and Riemannian mean tensors are shown in
Table 2, and in this case they are similar. This similarity is, we
believe, due to the small dispersion ( =D 0.48R ) of these tensors, as
under such conditions the Euclidean tangent plane is a good ap-
proximation to the local Riemannian manifold. At this point we
speculate that as the dispersion increases, the discrepancy be-
tween these two means also increases; we investigate this point
below.

Table 3 shows both Euclidean and Riemannian dispersions,
calculated using Eqs. (23) and (24). Note that Euclidean dispersion
has units of stress, whereas Riemannian dispersion is a unitless
number. The results also confirm Eqs. (25) and (26), in that Eu-
clidean dispersion is scale dependent whereas Riemannian dis-
persion is scale independent.

To further investigate the application of Eqs. (23) and (24) to
characterise stress variability, we generate two other data sets,
each comprising 20 tensors, by introducing random perturbations
to the Riemannian mean stress components of Table 2. The per-
turbations are drawn from uniform distributions, the ranges of
which are shown in Table 4, and added to the components of Ta-
ble 2 to give the data shown in Tables 5 and 6.

As the perturbations of the Data set 1 are less than those of
Data set 2, we would expect the dispersion associated with the
former to be less than the latter. The Euclidean and Riemannian
dispersions shown in Table 7 confirm this, indicating that both
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dispersions are capable of characterising stress variability. Further
investigations are needed to identify how the overall dispersions
are related to (i) the dispersions of the principal stress magnitudes
and the principal stress directions, and (ii) the scalar dispersions of
the individual stress components.

We speculated above that the difference between the Euclidean
and Riemannian mean tensors for Data set 1 should be less than
for Data set 2, since the former set has smaller dispersion than the
latter. Table 8 shows both the Euclidean and Riemannian distance
between the two mean tensors for each data set. Although the
magnitudes of these distances are much smaller than those shown
in Fig. 5b, they nevertheless support our speculation.
7. Conclusions

We have introduced approaches to calculating the mean and
dispersion of stress tensors based on distance measures in both
Euclidean and Riemannian spaces. Both approaches provide a
tensorial technique for processing of stress tensors, and are thus
more appropriate than the informal methods customarily used in
rock mechanics. The similarities and differences between Eu-
clidean and Riemannian statistics have been discussed, and their
potential applicability in engineering practice noted.

Elementary analyses involving stress tensor superposition and
interpolation show that Euclidean and Riemannian approaches may
lead to different results. When performing stress tensor super-
position and interpolating between two stress tensors, the Euclidean
approach yields rational results whereas the Riemannian approach
does not. We speculate that the discrepancy between the results
increases as the distance between the stress tensors increases.

We have used Euclidean and Riemannian approaches to cal-
culate the mean and dispersion of a group of real in situ stress
data. The two approaches yield similar results for the mean tensor,
and both are able to characterise stress dispersion. However, Eu-
clidean dispersion is scale dependent and has units of stress
whereas Riemannian dispersion is a unitless number and scale
independent. These features lead us to recommend Riemannian
dispersion for characterising stress tensor variability.

Perturbing these data to generate synthetic data sets posses-
sing different variability shows that as the dispersion increases, so
the difference between the Euclidean and Riemannian mean ten-
sors increases. This supports our speculation that the discrepancy
between the two approaches increases as the distance between
stress tensors increases.

We close with the observation that although Euclidean and
Riemannian approaches both give cogent results for the calcula-
tion of dispersion, with regard to calculation of a mean tensor
there seems to be a paradox: stress tensors live within a Rie-
mannian space, but it is only a Euclidean analysis that gives
meaningful results. We leave this paradox as an open problem.
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