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Abstract
The mean stress, as a fundamental statistical property of a group of stress data, is essential for stress variability characterisa-
tion. However, currently in rock mechanics, the mean stress is customarily and erroneously calculated by separately aver-
aging the principal stress magnitudes and orientations. In order to draw the attention of our community to the appropriate 
approach for stress variability characterisation, here we compare the customary scalar/vector mean with that obtained by 
the mathematically rigorous tensorial approach—the Euclidean mean. Calculation of mean stress using both a small group 
of actual in situ stress measurement results and a large group of simulated stress data (obtained using the combined finite–
discrete element method, FEMDEM) demonstrates that the two approaches yield different results. Further investigation of 
these results shows that the scalar/vector approach may yield non-unique and non-orthogonal mean principal stresses, and 
these may deviate significantly from those of the Euclidean mean. Our calculations and comparisons reveal that the scalar/
vector approach is deficient because it processes the principal stress magnitudes and orientations separately as independent 
quantities and ignores the connection between them. Conversely, the tensorial approach appropriately averages the tensors 
that simultaneously carry not only the information of stress magnitudes and orientations, but also the inherent relations 
between them. Therefore, arbitrarily using scalar/vector mean stress of in situ stress measurements as input in further rock 
engineering analyses may yield significantly erroneous results. We advise that stress data should be statistically processed 
in a tensorial manner using tensors referred to a common Cartesian coordinate system.
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Abbreviations
FEMDEM  Combined finite–discrete element method

List of symbols
Ep  Young’s modulus of boundary plate
Er  Young’s modulus of rock
Px  Boundary loading in x direction
Py  Boundary loading in y direction
�i  ith stress tensor, i = 1, 2, …,n
�̄�E  Euclidean mean stress tensor
�  Plunge of principal stress
�̄�  Mean of �
�  Trend of principal stress
�̄�  Mean of �

�  Normal component of stress tensor
�̄�  Mean of �
�1  Major principal stress
�̄�1  Mean of �1
�2  Intermediate principal stress
�̄�2  Mean of �2
�3  Minor principal stress
�̄�3  Mean of �3
�  Shear component of stress tensor
𝜏  Mean of �

1 Introduction

In situ stress is an important parameter for a wide range 
of endeavours in rock mechanics, including rock engineer-
ing design, hydraulic fracturing analysis, rock mass perme-
ability and evaluation of earthquake potential (Amadei and 
Stephansson 1997; Latham et al. 2013; Matsumoto et al. 
2015; Zang and Stephansson 2010; Zoback 2010). Because 
of the inherent complexity of fractured rock masses in terms 
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of varying rock properties and the presence of discontinui-
ties, stress in rock masses often displays significant variabil-
ity (Day-Lewis 2008; Hyett 1990; Martin 1990; Matsumoto 
et al. 2015; Obara and Sugawara 2003). The in situ stresses 
measured along a borehole near an underground gallery 
shown in Fig. 1 exemplify the dramatic change in terms of 
both principal stress magnitude and orientation that may be 
observed in a small zone containing a fault (Obara and Suga-
wara 2003). Therefore, it is essential to develop rigorous 
statistical approaches for stress data processing and stress 
variability characterisation (Gao 2017; Gao and Harrison 
2014, 2016a, b, 2018a, b; Lei and Gao 2018).

Mean stress is important not only because it is a funda-
mental statistical characteristic of a stress data group, but 
also because it is commonly used as an indicator of the over-
all stress state in a rock mass (Hakala et al. 2014; Han et al. 
2016; Martin 2007; Martin et al. 2003; Martin and Sim-
mons 1993; Siren et al. 2015). However, currently in rock 
mechanics, stress magnitude and orientation are commonly 
processed separately (Brown and Hoek 1978; Hakami 2011; 
Hast 1969; Herget 1988; Lisle 1989; Zhao et al. 2013). This 
effectively decomposes the stress tensor into scalar (princi-
pal stress magnitudes) and vector (principal stress orienta-
tions) components, and analyses them independently using 
classical statistics (Bulmer 1979) and directional statistics 
(Mardia 1972), respectively. One typical example is shown 
in Fig. 2, where histograms of principal stress magnitude 
and density contours of principal stress orientation are given. 
From these, statistics such as the mean principal stress mag-
nitudes and orientations are calculated and used as input 
in further rock engineering analyses. However, this scalar/
vector approach violates the tensorial nature of stress, and 

may either yield incorrect results or be difficult to interpret 
(Gao and Harrison 2014, 2015, 2017, 2018a, b; Hudson and 
Harrison 1997; Lei and Gao 2018). One manifest drawback 
of it is that orthogonality of the calculated mean principal 
stresses is not guaranteed.

Since stress is a second-order tensor, it should be pro-
cessed based on stress tensors referred to a common Carte-
sian coordinate system. This has been advocated by several 
researchers (Dyke et al. 1987; Dzik et al. 1989; Hudson 
and Cooling 1988; Hyett et al. 1986; Jupe 1994; Koptev 
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Fig. 1  Stress change in terms of both principal stress magnitude and 
orientation observed near a fault. The pairs of orthogonal intersect-
ing lines along the borehole represent the observed principal stresses 
at each location, with orientation being indicated directly and mag-
nitude being proportional to line length (after Obara and Sugawara 
2003)
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Fig. 2  Scalar/vector analyses of stress examine principal stress mag-
nitude and orientation separately using classical statistics and direc-
tional statistics, respectively (after Brady and Brown 2004)
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et al. 2013; Martin et al. 1990; Martin and Simmons 1993; 
Walker et al. 1990). By considering the tensorial nature of 
stress, Gao and Harrison (2016b) give a rigorous deriva-
tion of how the mean stress can be calculated in a tensorial 
manner—the so-called Euclidean mean—based on the dis-
tance measure between stress tensors in Euclidean space. 
For example, when the ith stress tensor �i is denoted by:

where � and � are the normal and shear tensor components, 
respectively, then the Euclidean mean stress is given as the 
average of each tensor component, i.e.

Here, �̄E denotes the Euclidean mean stress tensor, and �̄� and 
𝜏 denote the corresponding mean tensor components. This 
Euclidean mean essentially provides a theoretical support to 
the existing tensorial applications of calculating mean stress 
by averaging the corresponding stress tensor components 
(e.g., Dyke et al. 1987; Hudson and Cooling 1988; Koptev 
et al. 2013; Martin and Christiansson 1991a; Walker et al. 
1990).

It seems that the incorrect scalar/vector mean stress cal-
culation approach is still dominant in rock mechanics and 
rock engineering (e.g., Han et al. 2016; Siren et al. 2015; 
Valli et al. 2016; Veloso et al. 2015). In order to draw 
attention of our community to the correct approach for 
stress data processing, here, we demonstrate the reasons 
why the scalar/vector approach is inappropriate for stress 
variability characterisation and give a detailed investiga-
tion about how the scalar/vector mean may deviate from 
the tensorial Euclidean mean. Our goal is to unequivo-
cally show that stress variability should be characterised 
in a tensorial manner based on stress tensors referred to a 
common Cartesian coordinate system.

In this paper, we first present an example calculation 
of the mean of two stress states to emphasise the defi-
ciency of the scalar/vector approach and show the reason 
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why stress data should be processed in a tensorial man-
ner. Then, using actual in situ stress data (Martin 1990) 
and simulated stress data (Gao et al. 2017), we compare 
the scalar/vector and Euclidean means to demonstrate 
the inappropriateness of the scalar/vector approach and 
the rigorousness of the Euclidean mean. To facilitate the 
comparisons, we present the calculated mean stresses in 
terms of principal stress magnitude and orientation, unless 
otherwise mentioned.

2  Appropriateness of Scalar/Vector 
and Tensorial Approaches

As noted above, the scalar/vector approach of processing 
principal stress magnitude and orientation separately and 
independently may yield unreasonable results. Here, we 
represent the succinct and lucid example presented in Dyke 
et al. (1987) to emphasise this.

Let �1 and �2 be the two stress states

referred to a common Cartesian coordinate system x–y. 
These stress states are also represented in Fig. 3a by ellip-
ses whose semi-axes denote the magnitude and orientation 
of their principal values. �1 and �2 clearly possess identical 
principal stress magnitudes, but different principal stress ori-
entations. Since the orientation of principal stress is bi-direc-
tional, the trend is ambiguous: the �1 trend for �1 (reckoned 
anticlockwise positive from the x-axis) may be considered as 
000° or 180° with equal validity. Using these two values to 
calculate the mean orientation leads to either 045° (obtained 
using �1 trends of 000° and 090° for �1 and �2 , respectively) 
or 135° (using 180° and 090°): directions that differ by 90°. 
These are shown as ellipses A and B, respectively, in Fig. 3b. 
Clearly, this non-uniqueness is a significant deficiency of 
the scalar/vector calculation approach. In contrast, when the 
tensorial approach that averages the corresponding tensor 
components (i.e., Eq. 2) is applied, the unique mean sym-
bolised by circle C results (Fig. 3b).

The correctness of these two approaches can also be 
checked using the principle of superposition from solid 
mechanics: as Fig. 4 shows, superposition of stress states 
�1 and �2 results in

which is an isotropic stress state indicative of circle C in 
Fig. 3b. Thus, the tensorial Euclidean mean,

(3)�1 =

[
18 0

0 10

]
and �2 =

[
10 0

0 18

]
,

(4)�1 + �2 =

[
18 0

0 10

]
+

[
10 0

0 18

]
=

[
28 0
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]
,

(5)�̄E =
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2
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[
14 0

0 14

]
,
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which is seen to be one-half the stress state obtained by 
superposition (Eq. 4), is clearly correct. In comparison, 
the scalar/vector approach, which averages the principal 
stress magnitudes and orientations separately, gives an ani-
sotropic stress state, i.e., �̄�1 = 18 and �̄�2 = 10. This is evi-
dently incorrect. The failure of the scalar/vector approach 
with this simple physical case is sufficient to demonstrate 
its incorrectness.

Another straightforward example is that of averaging the 
stress �1 (Eq. 3) and an isotropic stress state, say

Since the principal stress orientations of �3 could be any 
possible orthogonal combination, the scalar/vector mean of 
�1 and �3 is again non-unique. However, the Euclidean mean 
yields the unique result of

Although the above examples focus on calculating the 
mean stress, the fundamental reasoning applies also to the 
case of other statistical processing of stress data such as 
characterisation of probability density distribution (Gao 
and Harrison 2018a), generation of random stress tensors 
(Gao and Harrison 2017) and stress dispersion calculation 
(Gao and Harrison 2016a, 2018b). Thus, the conclusion to 
be drawn is that statistical analyses of stress data should use 
tensors referred to a common Cartesian coordinate system 
rather than separate processing of principal stress magnitude 
and orientation. To further support this assertion, in the sec-
tions below, both actual in situ and simulated stress data, 
representing small and large data groups respectively, are 
used to further examine the difference between the scalar/
vector and Euclidean means.
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Fig. 3  Demonstration of stress tensor averaging using scalar/vector 
and tensorial approaches (after Dyke et al. 1987)

Fig. 4  Physical interpretation of 
tensor addition as the superposi-
tion of stress states. Note that 
each matrix represents the stress 
tensor at the plate centre
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3  Mean Stress Calculation of Actual In Situ 
Stress Data

As an example of actual stress data analysis, the mean stress 
is calculated using both scalar/vector and tensorial approaches 
for 19 in situ stress data. These data were obtained on the 300 
level as part of the in situ stress measurement campaigns made 
at the Atomic Energy of Canada Limited’s (AECL’s) Under-
ground Research Laboratory (URL) in southeastern Manitoba, 
Canada (Martin 1990). Geomechanics research was conducted 
at the AECL’s URL during the period of about 1982–2004 to 
assess the feasibility of deep disposal of nuclear fuel waste in 
a plutonic rock mass (Chandler 2003; Martin 1990). These 19 
stress data are part of the 99 in situ stress measurements pre-
sented by Martin (1990), which were made using a modified 
CSIR triaxial strain cell (Martin and Christiansson 1991b); 
they are used here to demonstrate the difference between sca-
lar/vector and Euclidean means, rather than provide an inter-
pretation of the stress conditions at the site. These data are 
presented in terms of principal stress magnitudes and orienta-
tions in Table 1.

For the scalar/vector mean, the mean principal stress mag-
nitudes are calculated by averaging each principal stress sepa-
rately, i.e.,

(8)�̄�1 =
1

n

n∑
i=1

𝜎1i , �̄�2 =
1

n

n∑
i=1

𝜎2i , �̄�3 =
1

n

n∑
i=1

𝜎3i ,

and the principal stress orientations are calculated using 
directional statistics (Davis 1986, p. 333). For this, orienta-
tions are converted to unit vectors, namely

where the coordinate system is x east, y north and z vertically 
upwards, and � ∈ [0, 2�] (clockwise positive from North, 
looking downwards) and � ∈ [0, �∕2] (positive from the 
horizontal plane to vertically upwards) denote the trend and 
plunge of principal stress, respectively (Fig. 5). The range 
( [0, �∕2] ) used here for plunge avoids ambiguous results 
caused by the bi-directional nature of principal stress orien-
tation. The mean vector that denotes the mean orientation is:

where

The orientation of the scalar/vector mean principal stress 
is then

(9)
xi = cos(�i) ⋅ sin(�i + �), yi = cos(�i) ⋅ cos(�i + �), zi = sin(�i),

(10)
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)/
L, ȳ =

(∑n

i=1
yi

)/
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(∑n
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�
tan−1(x̄∕ȳ) + 𝜋, if ȳ > 0

mod (tan−1(x̄∕ȳ), 2𝜋), if ȳ ≤ 0
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.

Table 1  Nineteen actual in situ stress data obtained on the 300 level of the AECL’s URL using the CSIR triaxial strain cell (data from Martin 
1990)

Depth (m) �
1

�
2

�
3

�
1
 (MPa) Trend (°) Plunge (°) �

2
 (MPa) Trend (°) Plunge (°) �

3
 (MPa) Trend (°) Plunge (°)

302.53 34.98 313 08 21.56 049 38 18.98 213 51
302.54 37.79 316 16 22.12 225 04 17.16 121 73
302.59 36.79 346 02 22.72 079 61 19.39 255 29
302.64 40.12 314 10 23.04 220 18 21.7 070 69
302.67 27.08 332 52 22.98 064 01 20.09 155 38
302.68 39.44 316 13 22.73 216 38 18.19 050 61
302.69 39.65 263 05 20.21 353 01 16.37 093 85
302.71 51.82 267 07 30.89 358 12 20.63 147 76
302.72 49.71 274 09 27.6 182 11 21.56 043 76
302.73 47.42 263 07 26.28 355 10 22 141 78
302.78 45.46 281 04 24.54 011 04 22.98 151 85
302.80 42.14 082 03 26.02 173 30 16.14 347 60
302.83 42.35 272 11 29.75 181 01 24.67 084 79
302.97 52.47 005 09 36.34 096 05 27.59 212 80
302.98 58.05 010 12 36.23 105 22 19.94 253 65
302.99 42.21 011 11 30.16 101 02 21.24 198 79
303.01 37.26 200 00 24.59 290 15 19.58 109 75
303.02 27.69 050 22 23.14 308 26 19.29 175 55
303.02 36.23 001 06 26.26 093 19 22.26 254 70
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The Euclidean mean is calculated by first transforming 
all 19 in situ stress data into a common Cartesian coordi-
nate system, say the x–y–z coordinate system used above, 
and then applying Eq. (2). The transformed tensors and 

their Euclidean mean are shown in Table 2. The eigen-
values and eigenvectors of the Euclidean mean represent 
the magnitudes and orientations of the principal mean 
stresses. These and the scalar/vector mean are shown in 
Table 3 and Fig. 6.

We observe that for these data, although the two 
approaches give similar orientation for �̄�3 (Fig.  6f), 
they lead to significantly different results for �̄�1 and �̄�2 
(Fig. 6a–e). At first sight, it seems that the scalar/vector 
approach yields more reasonable results since the means 
of both the magnitudes and orientations are close to the 
centre of their respective data, whereas the mean principal 
stresses calculated by the Euclidean approach are located 
towards the periphery of the data (Fig. 6). However, this 
is an artefact of the scalar/vector approach as it separately 
averages the magnitude and orientation, and thus the cal-
culated scalar/vector mean principal stress magnitudes and 
orientations are respectively located at the centre of each 
data cluster, as is shown in Fig. 6a–f.

z

N( )y

Principal stress
orientation

trend

plunge

E( )x

θϕ

Fig. 5  Demonstration of the coordinate system and principal stress 
trend and plunge for scalar/vector mean stress calculation for three-
dimensional stress data

Table 2  In situ stress tensor 
components in x–y–z coordinate 
system and their Euclidean 
mean

Depth (m) Stress tensor components (MPa)

�x �xy �xz �y �yz �z

302.53 28.20 −7.05 0.69 27.00 −2.37 20.31
302.54 28.93 −7.09 3.93 29.46 −3.64 18.67
302.59 21.14 −3.92 −1.20 35.78 −0.96 21.98
302.64 31.21 −8.29 2.47 31.33 −2.06 22.32
302.67 23.05 0.02 1.69 22.66 −2.94 24.44
302.68 25.45 −9.89 6.58 30.38 −2.25 24.53
302.69 39.19 2.31 2.04 20.49 0.14 16.55
302.71 51.30 1.09 3.84 30.51 −1.89 21.53
302.72 48.88 −1.82 4.39 27.47 0.93 22.52
302.73 46.59 2.97 3.27 26.56 −0.30 22.55
302.78 44.52 −3.97 1.81 25.31 −0.53 23.15
302.80 41.70 2.55 −1.98 23.87 4.07 18.73
302.83 41.66 −0.81 3.34 29.79 −0.24 25.32
302.97 36.29 1.07 −1.34 51.79 −3.75 28.32
302.98 33.99 2.71 −6.90 56.26 −6.14 23.97
302.99 30.58 2.20 −1.31 40.99 −3.78 22.04
303.01 25.79 4.20 1.15 35.72 −0.51 19.92
303.02 25.62 2.10 −0.97 23.22 −2.77 21.28
303.02 25.83 0.09 −1.26 36.09 −1.37 22.84
Euclidean mean 34.21 −1.13 1.07 31.83 −1.60 22.16

Table 3  Mean principal stress magnitudes and orientations of the 19 actual three-dimensional stress data calculated using both scalar/vector and 
tensorial approaches

Mean �
1

�
2

�
3

�
1
 (MPa) Trend (°) Plunge (°) �

2
 (MPa) Trend (°) Plunge (°) �

3
 (MPa) Trend (°) Plunge (°)

Scalar/vector mean 41.51 317 18 26.17 081 65 20.51 176 83
Euclidean mean 34.86 294 07 31.49 025 06 21.84 155 80
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Additionally, these results could lead one to observe that 
the Euclidean mean gives more extreme results than does 
the scalar/vector mean. This observation may be because 
currently in rock mechanics, stress data are commonly plot-
ted in terms of principal stress magnitude and orientation 
using histograms and hemispherical projections, respectively 
(e.g., Fig. 2), and thus it is such results that are regarded 
as the norm. However, in this scalar/vector approach, the 
principal stress magnitudes are first sorted to distinguish 
the major, intermediate and minor principal stresses, and 
these are averaged separately. This is in stark contrast to the 
Euclidean mean, which averages complete stress tensors and 
thus considers the contributions of both stress magnitude 
and orientation simultaneously. The initial extraction and 
sorting of principal stress magnitudes means that the scalar/
vector mean will generally yield larger �1 and smaller �3 than 
does the Euclidean mean, as can be seen from Fig. 6a, c, 
respectively. Since we have demonstrated in Sect. 2 that the 
Euclidean mean gives unique and physically correct results 
and thus should be used as the benchmark, we conclude 
that it is in fact the scalar/vector approach that gives more 
extreme results than does the Euclidean approach. Further-
more, and most importantly, with regard to orientation, a 
closer examination of the scalar/vector means reveals a lack 

of orthogonality of the principal mean stresses. Table 4 
shows that the angle between �̄�2 and �̄�3 is about 26°, which 
is clearly incorrect by definition. In contrast, the Euclidean 
principal mean stresses are all guaranteed to be mutually 
orthogonal.

The fundamental reason for the scalar/vector approach 
yielding infeasible results is that it processes the principal 
stress magnitude and orientation separately, thereby imply-
ing that they are independent quantities and hence ignoring 
the inherent connection between principal stress magnitude 
and orientation. On the other hand, the tensorial approach 
obtains principal stress magnitudes and orientations as 
eigenvalues and eigenvectors, which are fundamental prop-
erties of the Euclidean mean.
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Table 4  Angles between the mean principal stress orientations of the 
19 actual three-dimensional stress data calculated using both scalar/
vector and tensorial approaches

Mean principal stresses �
1
 and �

2
 (°) �

2
 and �

3
 (°) �

3
 and �

1
 (°)

Scalar/vector mean 87 26 78
Euclidean mean 90 90 90



90 K. Gao, J. P. Harrison 

1 3

Since rock engineering projects usually do not have the 
luxury of large numbers of in  situ stress measurements 
for comprehensive statistical analysis, in the next section, 
numerical simulation (two-dimensional combined finite–dis-
crete element method, FEMDEM) is used to generate a large 
group of stress data. These data are used to further exam-
ine the scalar/vector and Euclidean mean stress calculation 
approaches, and to check whether significant discrepan-
cies between the two means still exist for larger stress data 
groups. We use two-dimensional simulated stress data to 
avoid the large computational cost of three-dimensional 
FEMDEM simulations. Additionally, it is straightforward 
to visualise two-dimensional stress states and this makes 
it easier to compare the difference between scalar/vector 
and Euclidean means. However, the analyses and reasoning 
in the current paper apply equally to both two- and three-
dimensional stresses.

4  Mean Stress Calculation of Simulated 
Stress Data

The simulated stress data are obtained based on recent 
FEMDEM simulations (Gao et al. 2017) in which stress 
perturbation by discontinuities in a fractured rock mass are 
investigated. In this section, we first give an introduction of 
the model establishment and the FEMDEM code. Then the 
simulated stress data are used to compare the scalar/vector 
mean and Euclidean mean.

4.1  Model Establishment and FEMDEM Code

The 1.5 × 1.5-m rock mass model which contains two 
conjugate fracture sets striking roughly 140° and 100°, is 
extracted from an outcrop of the southern margin of the 
Bristol Channel Basin, UK (Belayneh et al. 2009), and used 
in current simulations. For stress-related simulations, the 
results have been shown to be influenced by the boundary 
conditions (Gao and Lei 2018). This earlier work examined 
the influence of the widely used stress boundary constraint 
and displacement boundary constraint on stress variability 
in a fractured rock mass. Stress boundary constraints (i.e., 
stress applied to the model boundary directly) prescribe 
stress values at the model boundary whilst allowing it to 
displace freely, whereas displacement boundary constraints 
(i.e., roller boundary conditions) prohibit the model bound-
ary from moving in a normal direction, but leave the stresses 
at the boundary unconstrained. Importantly, neither of these 
widely used boundary conditions reflects the actual situation 
of a rock mass at depth. From the viewpoint of stiffness, 
these boundary conditions can be generalised as boundary 
plates with particular stiffness that confine the fractured rock 
mass. Through a series of tests that compared the influence 

of boundary constraint stiffness on overall stress variability, 
it was found that for the rock mass model used here, bound-
ary plates with a thickness of 0.3 m and Young’s modulus 
equal to that of the rock (i.e., Ep = Er ) are more appropriate 
than either the pure stress boundary constraints or displace-
ment boundary constraints. The rock mass model together 
with the boundary condition used in the FEMDEM simula-
tion is presented in Fig. 7.

The numerical tool—FEMDEM—used in this work, 
which was originally developed by Munjiza and colleagues, 
combines the advantages of both the finite element method 
(FEM) and discrete element method (DEM; Munjiza 2004; 
Xiang et al. 2009a, b). This tool has proven its efficacy and 
reliability as a computational tool to solve problems in a 
wide range of endeavours in rock mechanics such as stress 
analysis (Harrison et al. 2010; Latham et al. 2013; Lei and 
Gao 2018), permeability in a fractured rock mass (Latham 
et al. 2013) and rock fracture behaviour (Lei et al. 2014; 
Rougier et al. 2011). Importantly, FEMDEM allows one to 
explicitly realise the geometries of fracture patterns, and 
the embedded combined single and smeared crack model 
further permits the simulator to capture the emergence of 
new fracturing (Munjiza et al. 1999) thereby avoiding the 
potential unrealistic high stress concentrations at fracture 
tips. Together, these make it an ideal tool for stress hetero-
geneity modelling (Gao and Lei 2018).

FEMDEM for stress heterogeneity simulation has been 
validated previously (Lei and Gao 2018), with the results 
showing agreement between FEMDEM-simulated stress 
fields and analytical results for stress distribution around 
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Fig. 7  Schematic description of the model used for FEMDEM simu-
lation (from Gao et al. 2017)
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a single fracture under various conditions. FEMDEM is 
therefore able to generate realistic stress fields in a fractured 
rock mass and thus provide larger groups of stress data than 
those obtained from actual in situ stress measurements (e.g., 
Sect. 3). As a result, we are able to examine whether the 
differences between the scalar/vector mean and Euclidean 
mean are still significant for large groups of stress data.

In the current simulation, the rock mass comprises a total 
of 72,272 approximately uniformly meshed three-node con-
stant strain triangular elements with an average element edge 
length of around 1 cm. Uniform compressive boundary load-
ings are increased gradually with increments of 1 and 2 Pa 
per time step until they reach the target values of Px = 5 
MPa and Py = 10 MPa, respectively. When the model attains 
equilibrium, stress tensors from each element are extracted 
for further analysis. The distribution of major principal 
stress �1 of the simulation results is shown in Fig. 8.

4.2  Comparison Between Scalar/Vector Mean 
and Euclidean Mean

The scalar/vector mean of the simulated stresses are cal-
culated by first decomposing the sampled stress tensors to 
obtain their principal stress magnitudes and orientations. 
The two mean principal stress magnitudes are calculated by 
averaging each of them, i.e., in a similar manner to Eq. (8). 

Here, for simplicity and convenience, we use the trend of 
the major principal stress �1 to denote the orientation of 
principal stresses, as the trend of minor principal stress �2 
can then be acquired accordingly. Since the trend of �1 is bi-
directional, to avoid ambiguous results, only the trends of �1 
located within the range of [0, �] (clockwise positive from 
North) are considered (see Fig. 5). Using the coordinate sys-
tem of x east and y north, the x and y coordinates of the unit 
vector representing the orientation of principal stress are:

where � denotes the trend of major principal stress, �1 . The 
scalar/vector mean principal stress orientation is calculated 
using directional statistics (Davis 1986, p. 316), i.e.,

The Euclidean mean is calculated using Eq. (2), with 
the eigenvalues and eigenvectors of the mean tensor giv-
ing the mean principal stress magnitudes and orientations, 
respectively. Both the scalar/vector and Euclidean means in 
terms of principal stresses are tabulated in Table 5, which, 
together with the probability density distributions of the 
sampled simulated stress data in terms of �1 , �2 and � are 
presented in Fig. 9. We observe that there is a distinct dif-
ference between the scalar/vector and Euclidean mean which 
is marked by the dashed lines in Fig. 9. The difference is 
further demonstrated by the Mohr’s circle representation of 
the two means in Fig. 10. For the mean principal stress mag-
nitudes, the scalar/vector mean gives larger �1 and smaller 
�2 than that of the Euclidean mean (Fig. 9a, b), which is 
similar to the mean calculation results shown previously 
using actual three-dimensional stress data. As for the mean 
principal stress orientation � , the scalar/vector mean devi-
ates significantly from the Euclidean mean: here it is almost 
perpendicular to the Euclidean mean (Fig. 9c, d).

As mentioned earlier, the scalar/vector approach is defi-
cient in that it processes the principal stress magnitudes 
and orientations as independent quantities and ignores the 
connection between them. In order to show that this is the 
case, correlation coefficients between �1 and �2 and � of the 

(13)

{
x = sin(�)

y = cos(�)
,

(14)�̄� = mod

�
tan−1

�∑n

i=1
xi∑n

i=1
yi

�
+ 𝜋,𝜋

�
.

Fig. 8  Distribution of major principal stress �
1
 (unit: Pa) under 

boundary loadings of Px = 5 MPa and Py = 10 MPa (after Gao et al. 
2017)

Table 5  Scalar/vector mean and Euclidean mean of two-dimensional 
simulated stress data in terms of principal stresses

Principal stresses �
1
 (MPa) �

2
 (MPa) �

1
 trend (°)

Scalar/vector mean 10.90 3.94 095
Euclidean mean 9.48 5.36 176
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simulated stress data are calculated and shown in Table 6. 
It is worth noting that the correlation coefficients are cal-
culated only for the purpose of illustrating the dependence 
between the principal stress magnitudes and orientations, 
and the non-zero correlation coefficients shown in Table 6 
clearly reveal the dependence between �1 and �2 and � . Note 

that for these data, the null hypotheses that the true correla-
tion between any pairs of �1 , �2 and � is zero are rejected—in 
favour of the alternative hypotheses that they are not equal 
to zero—at the commonly used significance level of 5%. 
Therefore, the scalar/vector approach of processing principal 
stress magnitudes and orientations as independent quantities 
is erroneous. The tensorial approach, which averages the ten-
sors that carry not only the information of stress magnitudes 
and orientations, but also the inherent connection between 
them, is thus more reasonable and appropriate.

We noted earlier that the scalar/vector mean tends to give 
larger mean �1 and smaller �2 than that does the Euclidean 
mean. Using the simulated stress data, we further investi-
gate the possibility of the scalar/vector approach generating 
extreme mean principal magnitudes. The investigation is 
conducted by first randomly sampling a certain number of 
stress tensors (say, 2, 5, 10, 20, 50 and 100) from the 72,272 
sampled simulated stresses and calculating both their scalar/
vector and Euclidean mean. Then the sampling procedure 

Fig. 9  Probability density 
distributions of the principal 
stress magnitude ( �

1
 and �

2
 ) and 

orientation ( � ) of the simulated 
stress data, and their scalar/vec-
tor and Euclidean means. Note 
that c and d show the probabil-
ity density distribution of � in 
rectangular and polar coordi-
nate systems, respectively. For 
improved visualisation in d, the 
probability density distribution, 
which has a period of � , has 
been duplicated from the range 
[0, �] to the range [�, 2�] . The 
dashed lines corresponding to 
the scalar/vector and Euclidean 
means are plotted to facilitate 
visualisation
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Table 6  Correlation coefficients 
between the principal stress 
magnitude and the orientation 
� of the two-dimensional 
simulated stress data

Correlation 
coefficients

�
1

�
2

�

�
1

1.00 0.39 0.16
�
2

1.00 0.18
� sym 1.00
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is repeated 10,000 times to obtain a series of mean stresses, 
and their probability density distributions are calculated. The 
results are presented in Fig. 11. From this, we observe that 
the scalar/vector mean of the major principal stress �1 is gen-
erally larger than that of the Euclidean mean, while for the 
mean minor principal stress �2 , the opposite is true, i.e., the 
scalar/vector means are smaller than the Euclidean means. 
Additionally, as the sampling size increases, the probability 
density distributions of both the scalar/vector and Euclidean 
mean become more concentrated and the difference between 
them more distinct, which implies an increasing probabil-
ity that the scalar/vector approach will generate extreme 
mean principal stress magnitudes that deviate more from 
the Euclidean mean. These random samplings suggest that 
when more in situ stress data are averaged (say, more than 
10), there is a greater chance of the scalar/vector approach 
producing incorrect estimates of mean stress.

Although here for smaller sample sizes, the difference 
between Euclidean mean and scalar/vector mean are rela-
tively small, it does not mean that the erroneous scalar/vec-
tor approach should be used in such circumstances. As can 
be seen from the case in Sect. 2 which averages only two 
stresses, a significant difference between the Euclidean mean 
and scalar/vector mean can also be found. Furthermore, and 
most significantly, there is no guarantee that the scalar/vec-
tor approach will produce orthogonal principal stresses. 
Thus, using the scalar/vector mean stress of in situ stress 
measurements as input to further rock engineering design 
or numerical simulations may have the potential to yield 
significantly erroneous results. Calculation of the tensorial 
Euclidean mean is straightforward, and as it is the correct 
approach, it is the one that should always be adopted.

5  Conclusions

We have examined the customary scalar/vector mean stress 
calculation approach that separately averages the principal 
stress magnitudes and orientations and compared it with the 
tensorial approach—Euclidean mean—that directly averages 
the stress tensors obtained in a common Cartesian coordi-
nate system. We show how the scalar/vector mean may devi-
ate from the Euclidean mean and test the appropriateness of 
both approaches.

Averaging two stress tensors reveals that the scalar/vector 
approach fails to interpret a simple physical case of superpo-
sition, and also gives non-unique mean values. On the other 
hand, the Euclidean mean is loyal to the tensorial nature of 
stress and gives physically reasonable and unique results. 
Application of the two methods to actual stress data dem-
onstrates that the scalar/vector mean principal stresses may 
deviate significantly from that of the Euclidean mean, and 
the scalar/vector approach may yield non-orthogonal mean 
principal stresses, which is in contrast with the Euclidean 
mean that always generates orthogonal results.

Calculation of the means of randomly sampled simulated 
stresses obtained using FEMDEM shows that the scalar/vec-
tor mean generally yields larger major and smaller minor 
principal stress magnitudes than the Euclidean mean, and 
the scalar/vector mean principal stress orientation differs 
significantly from that associated to the Euclidean mean. 
As the sampling size increases, the probability of the scalar/
vector approach generating extreme mean principal stress 
magnitudes increases.

Our calculations and comparisons lead us to conclude that 
the scalar/vector approach is deficient in that it processes the 

Fig. 11  Probability density 
distributions of the mean prin-
cipal stress magnitudes of the 
stress tensors sampled from the 
simulated stress data
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principal stress magnitudes and orientations separately as 
independent quantities and ignores the connection between 
them. The tensorial approach averages the tensors and 
considers the contributions of and relation between stress 
magnitude and orientation, and is thus more reasonable 
and appropriate. Given the above-mentioned shortcomings, 
using the scalar/vector mean of in situ stress measurements 
as input in rock engineering design or numerical simula-
tion may yield erroneous results. Calculation of the tensorial 
Euclidean mean is straightforward, and as it is the correct 
approach, it is the one that should always be adopted when 
processing stress data.
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